In the past few blogs, I've been discussing the recent publication of my book, Evolution’s Clinical
Guidebook: Translating Ancient Genes Into Precision Medicine. The premise of this book is that modern medicine is based on an understanding of evolutionary processes. Evolution shows us the relationships between the subdisciplines of medicine that benefit directly from Precision Medicine (i.e., pathology, microbiology, clinical genetics, pharmacology, and bioinformatics). In Evolution's Clinical Guidebook, all of these diverse fields are brought together, under the subject of evolution. To illustrate, I have listed below the first few pages of the index to the book (letters A through H). Just by perusing these index terms, you can get some idea of the role played by evolution as the great unifier of modern medicine.
Partial Book Index
A Abiogenesis catalysts, 2 cellular life, earliest signs of, 4 definition, 1 DNA, 4 evolution, 2 life on earth, 1 natural selection, 2 RNA, 45 Acanthodians, 215 Acarnus erithacus, 192, 192f Acidianus Tailed Virus, 160 Acquired disease, 20, 29-30 Actin, 17 Actinistia, 216 Actinopterygii, 215 Adaptive immune system, 214 Adaptive immunity, 161, 164 Adenocarcinoma, 125, 126-127f Adult organisms, 94, 102 Agenesis of the Corpus Callosum (ACC), 222 Aging, 77, 216, 257-258, 261-265 vs. diseases of old people, 257-259 evolution of, 252-265 gene, 257-258 Agnatha, 214 Allele, 77 Allium cepa, 66 Allium ursinum, 66 alphaA-Crystallin, 18 Alstrom syndrome, 213-214 Alternative RNA splicing, 126 Amanita phalloides, 155 Amborella trichopoda, 150 Ambulacraria, 197 Amniotes, 218 Amoebozoa, 184, 290 Amphibia, 216218 Amphioxus, 150 Amyloid world, 30 Anatomy, 246 Ancestral classes, 175-176, 196-197 Ancestral lineage, 12 Ancestral species, 12 eukaryotic development, steps in, 14-15, 15f gene families, 13-14 Ancylostoma duodenale, 292 Androgenesis, 221 Aneuploidy, 6970, 70f Angelman syndrome, 222 Angiogenesis, 126 Angiosperma, 29-44 Animal cells, 262 Animalia, 27f Animal model, human disease Koch's postulates and reliance, 299-300 nonhuman eutherians, 285 non-vertebrate models, cancer research, 298-299 for orthodiseases Caenorhabditis elegans (nematodes), 294, 296-298, 297f Danio rerio (zebrafish), 294, 297-298, 298f Drosophila melanogaster (fruit fly), 294, 297 homologous genes, 296 human pathologic processes, 295 orthologous genes, 295-296 Saccharomyces cerevisiae (yeast), 294-296, 296f rabbits, myxoma virus on, 300-302 rats, 285 specificities and idiosyncrasies clinical trial, 286-287 Gram-negative organisms, 286 infections, history of, 290-291, 293-294 inflammatory response, 287 lipopolysaccharide, 286 mice, 286288 microorganisms, potential pathogens, 288-290 rodent models, 287-288 TGN1412, 286287 Anlagen, 127 Aplastic anemia, 270 Apoikozoa, 186-187 Apomorphy, 198 Apoptosis, 53 Archaea, 26, 27f Archaeplastida, 14-15, 28, 186 Archiplastidae, 185 Arrhythmogenic cardiomyopathies, 191 Arthropods, hepatopancreas of, 118-119 Ascaris lumbricoides, 292 Aspergillus flavus, 155 Association vs. cause, 77 Ataxia telangiectasia, 30 Atlantogenata, 229 Autism, 58 Autoantibody disease vs. autoimmune disease, 233 Autosomal dominance, 270 Azacytidine, 122 B Bacillus globigii, 288 Bacillus subtilis, 244 Bacteria, 26 Baraitser-Winter syndrome, 57 Bartonella species, 26 Basal cell carcinomas, 223-224, 223f Basal layer, 255 Benign tumor, 218, 233 Bikonta, 183184 Bilateria, 94, 193203, 254 Bioinformatics, 78 Biological diversity, 152 Biological theory, 308 Biopsy specimen, 255f Biosphere, 157 Biosynthetic cycle, 17 BK polyomavirus, 292 Blastocystis hominis, 289 Blastula, 191 Blastulation, 189, 190f Blended class, 322, 325 Blood, photomicrograph of, 108f Bloom syndrome, 262 Bone marrow, 256 Bookie, 266 Bootstrapping paradoxes, 5 chicken and egg paradox, 68 enzyme and enzyme-synthesizing machinery, 8 general solution for, 11-12 hardware or software, 56 process of evolution and product of evolution, 9-10 RNA and DNA, 89, 10f species and class of animals, 10-11 Borderland of Embryology and Pathology, 118-120 Boreoeutheria, 229 Borhing-Opitz syndrome, 57 Brassica oleracea, 158 BRCA, 271 BRCA1 gene, 269 BRCA2 gene, 269 Breast cancer, 260 Breeds, 248, 249f Brugia malayi, 292 Bryophyte life cycle, 7 Bryophytes, 7 BUB1B gene, 70 Bubonic plague, 292 Bungarus caeruleus, 110f "But-for" test, 30 C Caenorhabditis elegans, 65, 123, 294, 296-298, 297f Calvin cycle, 17 Cambrian explosion, 21-25, 21-22f, 155-156, 185 coexistence and coevolution, 2526 animals (class Metazoa), 28 Archaea, 26, 27f Archaeplastida (plants), 28 bacteria, 26 fungi, 28 single-celled eukaryotes, 28 viruses, 26 Cambrian period, 21-22, 22f, 24 Cancer, 259261 Cancer cells, 51 Cancer progression, 30 Carcinogen, 127 Carcinogenesis, 17, 30-31, 223 Carcinoid tumors, 211 Carcinosarcomas, of uterus, 119 Caretaker diploid organism, 7 Carotenoids, 156 Carrier, 26, 31 asymptomatic, 27 Catarrhini, 231 Cause, 19, 24, 28 Cell types, epigenome and evolution of, 103-115 Cell-type-specific gene expression, 112 Cenancestor, 37 Cephalochordata, 198-203 Cercopithecoidea, 231 Chagas disease, 28, 269-270 Chance occurrence, 910, 31 Channelopathy, 127 Charcot-Marie-Tooth disease, 261 CHARGE syndrome, 57 Chemical diversity, 154 Chemokine, 293, 301 Child class, 198 Chimeric Antigen Receptor for T cells (CAR-T) therapy, 157, 164 Chitin, 185 Chlamydia trachomatis, 292 Chloroplast evolution, 1415, 17, 31 Choanoflagellatea, 186187 Choanozoa. See Apoikozoa Chondrichthyes, 215 Chordata, 197203 Chordoma, 198 Choriocarcinoma, 221 Chromatin, 156 Chromosomal disorder, 271 Chromosomes, 61 number, variations in, 66 Chronic obstructive pulmonary disease (COPD), 271 Chytrids, 186 Cichlids, 153154, 154f Ciliopathies, 213-214, 233 Cis-acting vs. trans-acting, 127-128 CISD2 gene, 264 Cisd2-null mice, 264 Clade, 128 Cladistics, 198 Class, 7, 32 of animals, 10, 12, 24-25 of cells, 6 of metazoan organisms, 25 of organisms, 45 of paradoxes, 5 Classification, 11 data retrieval, 176 vs. diagnosis, 199 flying animals, 175 formal definition of, 175 inferencing, 176 mammals, Aristotle, 173-174 vs. ontology, 177, 198 pseudo-scientific assertion, 177 self-correction, 177 simplification, 175 swimming animals, 175 walking animals, 175 Classification system vs. identification system, 325 Class noise, 322. See also Blended class Clinical trial, 286-287, 301 Clostridium feseri (blue bacteria), 107f Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), 251 Cnidaria, 193 Cnidarian organisms, 193, 195f Coccidia, 28 Cockayne syndrome, 262 Codon, 8, 32 Cofactor, 156, 165 Collision tumor theory, 120 Colon cancers, 119 Combined deficiency, 128 Commensal, 3233 Competence of classification, 176 Complex disease, 33 Composition theory, 120 Congenital anomaly, 271 Congenital chondrodystrophy, 17-18 Congenital disorder, 17-18, 33 Congenital hemangiomas, 119 Connective tissue, 128 Contig disease, 271 Contiguous gene deletion syndrome, 271 Convergence, 165 Conversion theory, 120 Copy number, 78 Corbels, 239-240 Cornelia de Lange syndrome, 112 Corpus callosum, 222 Cousin class, 167 CpG island, 128 CpG sites, 103 Cranial neural crest, 208 Craniata, 128, 148-149, 198-203, 207-212 Craniates. See Craniata Crocodilia, 218 Crohn's disease, 273 Ctenophora, 193 Ctenophorans, 193, 194f Cyanobacteria, 1415, 15f, 17, 23, 33 Cyclic neutropenia, 55 Cyclostomata, 211-212 Cynodonts, 219 Cystic fibrosis transmembrane conductance regulator (CFTR), 113 Cytokine storm, 286-287 Cytopenia, 78 Cytotrophoblasts, 229 D Danio rerio (zebrafish), 294, 297-298, 298f Daphnia pulex, 154 Darwin's theory, 153 Decitabine, 122 delta1-Crystallin, 18 Demodex, 291 Demospongiae, 192 De novo disease mutations, 56-58 De novo genes, 74-76 De novo mutation, 78 Dense core granules, 210 Dermal bones, 209 Dermis, 255 Dermoptera, 230 Desmosomes, 187, 188f, 189, 190f, 191 Deuterostomia, 197 Deuterotomia, 148-149 Developmental disorder, 128 Devolution, 241 Diagnosis vs. classification, 199 Diamond Blackfan anemia, 210 Diethystilbestrol (DES), 117 Differentiation, 78 Digenic disease, 128-129 DiGeorge syndrome, 82 Dinosauria, 218 Diploid organism, 7 Dipnomorpha, 216 Dipnotetrapodomorpha, 216 Dipoblasts, 193 Direct mutagen, 52 Direct transdifferentiation, 111 DNA, 7387 DNA-DNA reassociation kinetics, 151-152 DNA methylation, 4, 33 DNA repair, 17, 33 Dollo's law, 271 Dormancy, 33 Down syndrome, 56 Driver pathway, 19, 34 Drosophila melanogaster, 101, 294, 297 Drug development, economics of, 20 Druggable driver, 34 Dysgerminomas in women, 102 Dyskeratosis congenita, 262 Dysplasia, 199 E Echidnas, 226 Echinodermata, 197 Ectoderm, 129 Eikenella corrodens, 289 Embryo, 99103 vs. fetus, 129 Embryogenesis, 161 Embryology, relationship between evolution and, 93-103 Embryonic anlagen, 102 Embryonic stem cell, 129 Endoderm, 6, 34 End-stage condition, 272 Enhancer, 78 Enigmatic pacific hagfish, 211-212, 212f Enterocoelomata. See Deuterostomia Epidermis, 255, 256f Epigenome, 4, 34, 221 Epigenome disruptors, 121-122 Epigenomic methylation, variations in, 65 Epimutation, 129-130 Epipubic bones, 239 Epistasis, 3435 Epithelial cell, 130 Epitheliozoa, 193 Epithelium, 189, 189f Erasure, 105-106, 221 ERCC6 gene, 262 ERCC8 gene, 262 Etiology, 79 Euarchonta, 230 Euarchontoglires, 229-230 Eugenics, 247-252 Eugnathostomata, 215 Eukaryota, 15, 148149 Bikonta, 183-184 eukaryotes, 179 Excavata, 183-184 mitochondria, 180 nucleus, 179, 182 Podiata, 183184 prokaryotic life forms, 179 single-celled eukaryotes, 179, 180f Syringammina fragilissima, 179 undulipodia, 182 Unikonta, 183-184 Eukaryotes, 7, 67, 153-155, 161, 176, 189 Eumetazoa, 191-193 Euteleostomi, 215 Eutheria, 97-98, 226-235 Eutherians, 226-235 Evo-devo, 130 Evolutionary convergence, 166 Evolutionary frustration, principle of, 248 Evolution, as fantasy bacterial pathogen, 317-319 disease diagnosis by symptoms, 321-323 drug development and testing, 319 homologous genes, 316317 science fiction aficionados, 324 speciation, 324 taxonomic organisms, treatments for, 319-321 theory of intelligent design, 324-326 Evolution deniers, 307 Evolvability, 153, 165 Exaptation, 35 Excavata, 183184, 290 Exome sequencing, 79 Extraembryonic cells, 233 Extraembryonic tissues, 221, 233 F Facultative intracellular organism, 79 Fanconi anemia bone marrow failure, 257, 263 Female Anopheles mosquito, 107 Fetal period, 101 Filarial nematodes, 292 Filozoa, 186 First Law of Bioinformatics, 59 Fish, 118-119 Forme fruste, 130 Founder effect, 13, 35 FOXL2 gene, 112 Fungi, 28, 186, 189 G Gallertoids, 130, 187, 191192 Gametes, 6, 35, 148-149 Gametic organism, 7 Gametophytes, 7 Gastrointestinal stromal tumors (GISTs), 19 Gastropods, 118-119 Gene(s), 269 Gene conservation, 58-61 Gene diversity, 154 Gene editing techniques, 251 Gene pool, 13, 26, 35, 5861, 151152, 314, 317319, 324 Generalization, 35 Gene regulation, 35 Gene sharing, 18 Gene size, 6667 Gene-targeted therapy, 19 Genetically engineered mouse (GEM), 233-234 Genetic fine-tuning, 124-138 Genetic heterogeneity, 130 Genetic instability, 79 Genetic mutations, 151 Genetic surplus disorder, 79 Genome, 12, 14-15, 26, 35 Genome Wide Association Study (GWAS), 272 Genomic architecture, 6473 Genomic disorder, 79 Genomic regulation, 7687 Genomic regulatory processes, 125138 Genomic regulatory systems, pathologic conditions of, 121-138 Genomic structural abnormalities (GSVs), 69 Genomic structural variation, 79 Germ cell, 6, 35 Germ cell line, 35-36 Germ layers, 131 Germline, 79 Germline mutation, 80 Gestational trophoblastic disease, 234 Giant viruses, 162 Glires, 230 Globins, 13 Gnathostomata, 161, 214-215 Gorillini, 232 H HACEK, 272 Haeckel's theory, 96-97 Haemophilus influenzae, 244 Hair follicles, 223224, 224f Hamartoma, 158, 166 Haploid, 78, 36 Haploid organisms, 7, 36 Haplorrhini/haplorhini, 231 Haplotype, 80 HAS2 gene, 248 Hemichordata, 197 Hepatitis B, 292 Hepatocyte, 100 Hepatoid adenomas, 119 Hepatoma, 131 Hereditary nonpolyposis colorectal cancer syndrome, 131 Heritability, 131 Heterokonts, 289, 301 Hirschspring disease, 209 Histone, 65, 199 Histone disruptors, mild effects of, 122 Histopathology, 131 Histozoa, 193 Hodgkin lymphoma, 273 Holometabolism, 156, 166 Holomycota, 186 Holozoa, 186 Holt-Oram syndrome, 123 Homeobox, 36 Hominidae, 231232 Homininae, 232 Hominini, 232 Hominoidea, 231 Homo, 232 Homo erectus, 232 Homolog, 12, 18, 24, 36 Homologous genes, 316-317 Homologous recombination, during meiosis, 62 Homoplasy, 166 Homo sapiens, 147149, 176, 232235 Homozygosity, 80 Hookworms, 292 Horizontal gene transfer, 80 Horse, gestation period of, 241f Horseshoe crabs, 149, 149f Host, 155157, 159161, 163, 166 HOX gene diseases, mild clinical course of, 123 HOX genes, 24 Human(s), 232235 Human diseases, 115118 Human embryo, dorsum of, 97f Human embryology, 246 Human embryonic stem cells, 100f Human gene pool, 55-56 Human kidney, 101 Human phylogenetic lineage, 177-179 Hutchinson-Gilford progeria syndrome, 263 Hydatidiform mole, 221, 234 Hydractinia carnea, 253 Hydrops-ectopic calcification-"moth-eaten" (HEM), 17-18 Hylobatidae, 231 Hyperplasia, 273 Hypoxanthine-guanine phosphporibosyl transferase (HGPRT), 60-61Evolution’s Clinical Guidebook: Translating Ancient Genes Into Precision Medicine is available from Amazon or from the publisher's website. If you are fortunate enough to have full institutional access to ScienceDirect, you can download chapters at no cost.
In yesterday's blog, I announced the publication of my book, Evolution’s Clinical
Guidebook: Translating Ancient Genes Into Precision Medicine. The premise of this book is that modern medicine is based on an understanding of evolutionary processes. Basically, without evolution, the fledgling field of precision medicine would wither and die, and we would lose our opportunity to prevent, diagnose, and treat the diseases that account for the bulk of morbidity and mortality in humans and in animals.
This book is available from Amazon or from the publisher's website. If you are fortunate enough to have full institutional access to ScienceDirect, you can download chapters at no cost. Here is the Table of Contents.
Contents: Evolution’s Clinical Guidebook: Translating Ancient Genes into
Precision Medicine
1. Evolution, From the Beginning 1 Section 1.1 In the Beginning 1 Section 1.2 Bootstrapping Paradoxes 5 Section 1.3 Our Genes, for the Most Part, Come From Ancestral Species 12 Section 1.4 How do Metabolic Pathways Evolve? 15 Section 1.5 Cambrian Explosion 21 Section 1.6 After the Cambrian: Coexistence and Coevolution 25 Glossary 29 References 44 2. Shaking Up the Genome 51 Section 2.1 Mutation Burden 51 Section 2.2 Gene Pools and Gene Conservation 58 Section 2.3 Recombination and Other Genetic Tricks 61 Section 2.4 Genomic Architecture: An Evolutionary Free-for-All 64 Section 2.5 Rummaging Through the DNA Junkyard 73 Glossary 77 References 87 3. Evolution and Embryonic Development 93 Section 3.1 The Tight Relationship Between Evolution and Embryology 93 Section 3.2 The Epigenome and the Evolution of Cell Types 103 Section 3.3 An Embryonic Detour for Human Diseases 115 Section 3.4 The Borderland of Embryology and Cancer 118 Section 3.5 Pathologic Conditions of the Genomic Regulatory Systems 121 Glossary 125 References 138 4. Speciation 145 Section 4.1 A Species is a Biological Entity 145 Section 4.2 The Biological Process of Speciation 147 Section 4.3 The Diversity of Living Organisms 152 Section 4.4 The Species Paradox 157 Section 4.5 Viruses and the Meaning of Life 159 Glossary 164 References 168 5. Phylogeny: Eukaryotes to Chordates 173 Section 5.1 On Classification 173 Section 5.2 The Complete Human Phylogenetic Lineage 177 Section 5.3 Eukaryotes to Obazoans 179 Section 5.4 Opisthokonts to Parahoxozoa 185 Section 5.5 Bilaterians to Chordates 193 Glossary 198 References 203 6. Phylogeny: Craniates to Humans 207 Section 6.1 Class Craniata and the Ascent of the Neural Crest 207 Section 6.2 Vertebrates to Synapsids 212 Section 6.3 Mammals to Therians 220 Section 6.4 Eutherians to Humans 226 Glossary 233 References 235 7. Trapped by Evolution 239 Section 7.1 Spandrels, Pendentives, Corbels, and Squinches 239 Section 7.2 Evolving Backwards 240 Section 7.3 Eugenics: Proceed With Caution 247 Section 7.4 The Evolution of Aging, and the Diseases Thereof 252 Section 7.5 Why Good People Get Bad Diseases 265 Glossary 270 References 277 8. Animal Models of Human Disease: Opportunities and Limitations 285 Section 8.1 The Animal Model Problem, in a Nutshell 285 Section 8.2 Specificities and Idiosyncrasies 286 Section 8.3 New Animal Options 294 Section 8.4 The Proper Study of Mankind 300 Glossary 301 References 302 9. Medical Proof of Evolution 307 Section 9.1 What Does Proof Mean, in the Biological Sciences? 307 Section 9.2 The Differences Between Designed Organisms and Evolved Organisms 309 Section 9.3 What if Evolution Were Just a Foolish Fantasy 316 Glossary 325 References 326 Index 329
This month, Academic Press has published my book, Evolution’s Clinical
Guidebook: Translating Ancient Genes Into Precision Medicine. The premise of this book is that modern medicine is based, in one way or another, on an understanding of evolutionary processes. If evolution were a fabrication, then we would not be able to make any sense of the genomic data that is pouring out of research laboratories. We would not be able to design rational, cost effective, screening protocols to test the effectiveness of new drugs. We would not be able to identify the human sub-populations that will benefit from gene-targeted therapies. We would not be able to find the cause of rare diseases, and we would not be able to apply such knowledge to the treatment of common diseases. Without evolution, we would not understand how cancer develops, or how we might intervene in the process. Basically, without evolution, the fledgling field of precision medicine would wither and die, and we would lose our opportunity to prevent, diagnose, and treat the diseases that account for the bulk of morbidity and mortality in humans and in animals. This book demonstrates, through hundreds of examples, that modern medicine is built on the theory of evolution.
This book is available from Amazon or from the publisher's website. If you are fortunate enough to have full institutional access to ScienceDirect, you can download chapters at no cost.
Jules Berman
The Second edition of my book Principles and Practice of Big Data has just been released and is available for purchase at many sites, including Amazon.
For those of you fortunate enough to have access to Science Direct, you can download chapters of my book at:
https://www.sciencedirect.com/science/book/9780128156094
TABLE OF CONTENTS Author's Preface to Second Edition Author's Preface to First Edition Chapter 1. Introduction Section 1. Definition of Big Data Section 2. Big Data Versus small data Section 3. Whence Comest Big Data? Section 4. The Most Common Purpose of Big Data is to Produce small data Section 5. Big Data Sits at the Center of the Research Universe Section 6. Case Study: From the Press: Big Claims for Big Data Chapter 2. Providing Structure to Unstructured Data Section 1. Nearly all Data is Unstructured and Unusable in its Raw Form Section 2. Term Extraction Section 3. Autocoding Section 4. Concordances Section 5. Indexing Section 6. Machine Translation Section 7. Case Study: Sorted Lists (Why and Why Not) Section 8. Case Study: Doublet Lists Section 9. Case Study: Ngram Lists Section 10. Case Study: Proximity Searches Using Only a Concordance Section 11. Case Study (Advanced): Burrows Wheeler Transform (BWT) Chapter 3. Identification, Deidentification, and Reidentification Section 1. What are Identifiers? Section 2. Difference Between an Identifier and an Identifier System Section 3. Generating Identifiers Section 4. Really Bad Identifier Methods Section 5. Registered Unique Object Identifiers Section 6. Deidentification Section 7. Reidentification Section 8. Case Study: Data Scrubbing Section 9. Case Study: Identifiers in Image Headers Section 10. Case Study: Hospital Registration Section 11. Case Study: One-Way Hashes Chapter 4. Metadata, Semantics, and Triples Section 1. Metadata Section 2. eXtensible Markup Language Section 3. Namespaces Section 4. Semantics and Triples Section 5. Case Study: Syntax for Triples Section 6. Case Study: RDF Schema Section 7. Case Study: RDF Parsers and the Fungibility of Triples Section 8. Case Study: Dublin Core Chapter 5. Classifications and Ontologies Section 1. It's All About Object Relationships Section 2. The Difference Between Object Relationships and Object Similarities Section 3. Classifications, the Simplest of Ontologies Section 4. Ontologies, Classes with Multiple Parents Section 5. Choosing a Class Model Section 6. Paradoxes Section 7. Class Blending Section 8. Common Pitfalls in Ontology Development Section 9. Case Study: An Upper Level Ontology Section 10. Case Study: Visualizing Class Relationships Section 11. Case Study: Bringing Order from Chaos with the Classification of Living Organisms Chapter 6. Introspection Section 1. Knowledge of Self Section 2. Data Objects Section 3. How Big Data Uses Introspection Section 4. Case Study: Timestamping Data Section 5. Case Study: A Visit to the TripleStore Chapter 7. Data Integration and Software Interoperability Section 1. Another Big Problem for Big Data Section 2. The Standard for Standards Section 3. Standard Trajectories Section 4. Specifications and Standards Section 5. Versioning Section 6. Compliance Issues Section 7. Interfaces to Big Data Resources Section 8. Case Study: Standardizing the Chocolate Teapot Chapter 8. Immutability and Immortality Section 1. The Importance of Data that Cannot Change Section 2. Immutability and Identifiers Section 3. Persistent Data Objects Section 4. Coping with the Data that Data Creates Section 5. Reconciling Identifiers Across Institutions Section 6. Case Study: The Trusted Timestamp Section 7. Case Study: Blockchains and Distributed Ledgers Section 8. Case Study: Zero-Knowledge Reconciliation Chapter 9. Assessing the Adequacy of a Big Data Resource Section 1. Looking at the Data Section 2. The Minimal Necessary Properties of Big Data Section 3. Case Study: Utilities for Viewing and Manipulating Very Large Files Section 4. Case Study: Flattened Data Section 5. Case Study: Data that Comes with Conditions Chapter 10. Measurement Section 1. Accuracy and Precision Section 2. Data Range Section 3. Counting Section 4. Normalizing, and Transforming Your Data Section 5. Reducing Your Data Section 6. Understanding Your Control Section 7. Practical Significance of Measurements Section 8. Case Study: Gene Counting Section 9. Case Study: The Significance of Narrow Data Ranges Section 10. Case Study (Advanced): Fast Fourier Transform Section 11. Case Study (Advanced): Principal Component Analysis Chapter 11. Indispensable Tips for Fast and Simple Big Data Analysis Section 1. Speed and Scalability Section 2. Fast Operations, Suitable for Big Data, that Every Computer Supports Section 3. Fast Correlation Methods Section 4. Clustering Section 5. Methods for Data Persistence (Without Using a Database) Section 6. Back_of_Envelope Computations for Big Data Section 7. Fast Data Retrieval for Lists of any Size Section 8. Case Study: One-Pass Mean and Standard Deviation Section 9. Case Study: Climbing a Classification Section 10. Pre-computing lookup lists: Google's PageRank Section 11. Case Study: A Database Example Section 12. NoSQL and other Non-Relational Big Data Databases Chapter 12. Finding the Clues in Large Collections of Data Section 1. Denominators Section 2. Frequency Distributions Section 3. Multimodality Section 4. Outliers and Anomalies Section 5. Case Study: Discarding the Noisiest Frequencies in a Data Signal Section 6. Case Study: Predicting User Preferences Section 7. Case Study: Multimodality in Legacy Data Section 8. Case Study: Big and Small Black Holes Chapter 13. Using Random Numbers to Your Big Data Analytic Problems Down to Size Section 1. The Remarkable Utility of (Pseudo)Random Numbers Section 2. Resampling and Permutating Section 3. Case Study: Sample Size and Power Estimates Section 4. Monte Carlo Simulations Section 5. Case Study: Monty Hall Problem: Solving What We Cannot Grasp Section 6. Case Study: Frequency of Unlikely String of Occurrences Section 7. Case Study: The Infamous Birthday Problem Section 8. Case Study: A Bayesian Analysis of Insurance Costs Chapter 14. Special Considerations in Big Data Analysis Section 1. Theory in Search of Data Section 2. Data in Search of Theory Section 3. Overfitting Section 4. Bigness Bias Section 5. Too Much Data Section 6. Fixing Data Section 7. Data Subsets in Big Data: Neither Additive nor Transitive Section 8. Additional Big Data Pitfalls Section 9. Case Study: Curse of Dimensionality Chapter 15. Big Data Failures and How to Avoid (Some of) Them Section 1. Failure is Common Section 2. Failed Standards Section 3. Blaming Complexity Section 4. Perils of Redundancy Section 5. Save Time and Money; Don’t Protect Data that Does not Need Protection Section 6. An Approach to Big Data that May Work For You Section 7. After Failure Section 8. Case Study: Cancer Biomedical Informatics Grid, a Bridge too Far Section 9. Case Study: The Gaussian Copula Function Chapter 16. Legalities Section 1. Responsibility for the Accuracy and Legitimacy of Data Section 2. Rights to Create, Use, and Share the Resource Section 3. Copyright and Patent Infringements Incurred by Using Standards Section 4. Protections for Individuals Section 5. Consent Section 6. Unconsented Data Section 7. Good Policies are a Good Policy Section 8. Case Study: The "Inconclusive" Data Analysis Section 9. Case Study: The Havasupai Story Section 10. Case Study: Double-edged Sword of the U.S. Data Quality Act Chapter 17. Data Sharing Section 1. What Is Data Sharing, and Why Don't We Do More of It? Section 2. Common Complaints Section 3. Case Study: Life on Mars Section 4. Case Study: Who Shares Their Data Section 5. Case Study: National Patient Identifier Chapter 18. Data Reanalysis: Much More Important than Analysis Section 1. First Analysis (Nearly) Always Wrong Section 2. Why Reanalysis is More Important than Analysis Section 3. Case Study: Reanalysis of Old JADE Collider Data Section 4. Case Study: Vindication Through Reanalysis Section 5. Case Study: Finding New Planets from Old Data Chapter 19. Repurposing Big Data Section 1. What is Data Repurposing? Section 2. Dark Data, Abandoned Data, and Legacy Data Section 3. Case Study: From Postal Code to Demographic Keystone Section 4. Case Study: Fingerprints and Data-driven Forensics Section 5. Scientific Inferencing from a Databases of Genetic Sequences Section 6. Case Study: Linking global warming to high-intensity hurricanes Section 7. Case Study: Inferring climate trends with geologic data Section 8. Case Study: Old tidal data, and the iceberg that sank the Titanic Section 9. Case Study: Lunar Orbiter Image Recovery Project Section 10. Case Study: The Cornucopia of the Natural Sciences Chapter 20. Societal Issues Section 1. How Big Data Is Perceived by the Public Section 2. Reducing Costs and Increasing Productivity with Big Data Section 3. Public Mistrust Section 4. Saving Us from Ourselves Section 5. Who is Big Data? Section 6. Hubris and Hyperbole Section 7. Case Study: The Citizen Scientists Section 8. Case Study: 1984, by George Orwell
A prior post listed 7 assertions regarding the role of infectious organisms on the human genome. In the next few blogs we'll look at each assertion, in excerpts from Precision Medicine and the Reinvention of Human Disease. Here's the seventh:
A prior post listed 7 assertions regarding the role of infectious organisms on the human genome. In the next few blogs we'll look at each assertion, in excerpts from Precision Medicine and the Reinvention of Human Disease. Here's the sixth:
A prior post listed 7 assertions regarding the role of infectious organisms on the human genome. In the next few blogs we'll look at each assertion, in excerpts from Precision Medicine and the Reinvention of Human Disease. Here's the fifth:
A prior post listed 7 assertions regarding the role of infectious organisms on the human genome. In the next few blogs we'll look at each assertion, in excerpts from Precision Medicine and the Reinvention of Human Disease. Here's the fourth:
A prior post listed 7 assertions regarding the role of infectious organisms on the human genome. In the next few blogs we'll look at each assertion, in excerpts from Precision Medicine and the Reinvention of Human Disease. Here's the third:
A prior post listed 7 assertions regarding the role of infectious organisms on the human genome. In the next few blogs we'll look at each assertion, in excerpts from Precision Medicine and the Reinvention of Human Disease. Here's the second:
Yesterday's post listed 7 assertions regarding the role of infectious organisms on the human genome. In the next few blogs we'll look at each assertion, in excerpts from Precision Medicine and the Reinvention of Human Disease. Here's the first:
In the context of Precision Medicine, infections draw our attention because they have
played an important role in the evolution of the eukaryotic genome. Over the next few blog posts, we will
explore the following:
Excerpted from Precision Medicine and the Reinvention of Human Disease
– Epstein-Barr virus (B-cell lymphomas, Burkitt lymphoma, nasopharyngeal cancer, Hodgkin disease and T-cell lymphomas) – Hepatitis B virus (hepatocellular carcinoma) – Human papillomavirus types 5, 8, 14, 17, 20, and 47 (skin cancer) – Human papillomavirus types 16, 18, 31, 33, 35, 39, 45, 52, 56, 58 (cervical cancer, anogenital cancer) – Human papillomavirus types 6 and 11 (verrucous carcinoma) – Human papillomavirus types 16, 18, 33, 57, 73 (cancers of oral cavity, tongue, larynx, nasal cavity, and esophagus) – Merkel cell polyomavirus (MCPyV) (Merkel cell carcinoma) – HTLV-1 (adult T-cell leukemia) – Human herpesvirus 8 (Kaposi sarcoma) – Hepatitis C virus—hepatocellular carcinoma and low-grade lymphomas – JC, BK, and SV40-like polyoma viruses (tumors of brain and pancreatic islet tumors, and mesotheliomas) – Human endogenous retrovirus HERV-K (seminomas and germ cell tumors) – Schistosomiasis and squamous cell carcinoma of bladder – Opisthorchis viverrini and Clinorchis sinensis, flatworms (flukes), found in Southeast Asia, (cholangiocarcinoma) – Helicobacter pylori and gastric MALToma (Mucosa-Associated Lympoid tissue lymphoma) [55]Carcinogenic viruses profoundly influence the number of cancer deaths, worldwide. These include hepatitis B virus (associated with an increased incidence of hepatocellular carcinoma) and human papillomavirus (which causes cervical cancer). Liver cancer is the third leading cause of cancer deaths worldwide, accounting for 611,000 deaths in 2000 [50]. It is easy to understand that the importance of vaccine development for infections that contribute to chronic diseases and cancers cannot be overstated. As we learn more about the biological steps involved in the infection process, hope looms that vaccines and preventive drugs will be developed that target different types of organisms, based on shared properties of infection, invasion, immunologic resistance, persistence, or phylogeny, as discussed in Precision Medicine and the Reinvention of Human Disease, Section 4.4, “Pathway-Directed Treatments for Convergent Diseases,” [56–60]. - Jules Berman key words: public health, prevention, precision medicine, cancer, cancer vaccines, jules j berman, Ph.D., M.D.
Readers from outside the United States are probably wondering
why the United States agonizes over the problem of patient identification. In many other
countries, individuals are given a unique national identifier, and all medical data associated
with the individual is kept in a central data repository under the aegis of the government’s
health service. A single, permanent identifier is used by a patient throughout life, in every
encounter with a hospital, clinic, or private physician. As a resource for researchers, the national
patient identifier ensures the completeness of data sets and eliminates many of the
problems associated with poorly implemented local identifier systems.
The formal systems that assign data objects to classes, and that relate classes to other classes, are known as ontologies. When the data within a Big Data resource is classified within an ontology, data analysts can determine whether observations on a single object will apply to other objects in the same class. Similarly, data analysts can begin to ask whether observations that hold true for a class of objects will relate to other classes of objects. Basically, ontologies help scientists fulfill one of their most important tasks; determining how things relate to other things.
Equus caballus Equus subg. Equus Equus Equidae Perissodactyla Laurasiatheria Eutheria Theria Mammalia Amniota Tetrapoda Sarcopterygii Euteleostomi Teleostomi Gnathostomata Vertebrata Craniata Chordata Deuterostomia Coelomata Bilateria Eumetazoa Metazoa Fungi/Metazoa group Eukaryota cellular organismsTaxonomists who view this lineage instantly grasp the place of domestic horses in the classification of all living organisms. The rules for constructing classifications seem obvious and simplistic. Surprisingly, the task of building a logical, and self-consistent classification is extremely difficult. Most classifications are rife with logical inconsistencies and paradoxes. Let's look at a few examples. In 1975, while touring the Bethesda, Maryland campus of the National Institutes of Health, I was informed that their Building 10, was the largest all-brick building in the world, providing a home to over 7 million bricks . Soon thereafter, an ambitious construction project was undertaken to greatly expand the size of Building 10. When the work was finished, building 10 was no longer the largest all-brick building in the world. What happened? The builders used material other than brick, and Building 10 lost its classification as an all-brick building, violating the immutability rule of class assignments. Apparent paradoxes that plague any formal conceptualization of classifications are not difficult to find. Let's look at a few more examples. Consider the geometric class of ellipses; planar objects in which the sum of the distances to two focal points is constant. Class Circle is a child of Class Ellipse, for which the two focal points of instance members occupy the same position, in the center, producing a radius of constant size. Imagine that Class Ellipse is provided with a class method called "stretch", in which the foci are moved further apart, thus producing flatter objects. When the parent class "stretch" method is applied to members of the Class Circle, the circle stops being a circle and becomes an ordinary ellipse. Hence the inherited "stretch" method forces members of Class Circle to transition out of their assigned class, violating the intransitive rule of classifications. Let's look at the "Bag" class of objects. A "Bag" is a collection of objects, and the Class Bag is included in most object-oriented programming languages. A "Set" is also a collection of objects (i.e., a subclass of Bag), with the special feature that duplicate instances are not permitted. For example, if Kansas is a member of the set of U.S. States, then you cannot add a second state named "Kansas" to the set. If Class Bag were to have an "increment" method, that added "1" to the total count of objects in the bag, whenever an object is added to Class Bag, then the "increment" method would be inherited by all of the subclasses of Class Bag, including Class Set. But Class Set cannot increase in size when duplicate items are added. Hence, inheritance creates a paradox in the Class Set. How does a data scientist deal with class objects that disappear from their assigned class and reappear elsewhere? In the examples discussed here, we saw the following:
If everything you know about Precision Medicine comes from the lay press, you may have an unrealistic notion of what's happening in this field. The news seems to stress the one gene -> one disease paradigm that is easy to understand, but largely irrelevant to all the common diseases that occur in humans.
We can define Precision Medicine as an approach to the prevention, diagnosis, and treatment
of disease that is based on a deep understanding of the sequence of biological events
that lead to disease. With this approach we are learning:
If you believe the lay press, Precision Medicine involves sequencing a patient's genome and determining the proper treatment based on the individual's unique genetic attributes. The NIH (National Institutes of Health) seems to be encouraging this interpretation of the field. From the US National Institutes of Health comes the following description: "Precision Medicine is an emerging approach for disease prevention and treatment that takes into account people's individual variations in genes, environment, and lifestyle. The Precision Medicine Initiative will generate the scientific evidence needed to move the concept of Precision Medicine into clinical practice". An Advisory Committee to the NIH Director would include, under the mantle of Precision Medicine, "providing individual side-effect profiles of drugs, and preventative health care check-ups that include specific recommendations developed from interpreting an individual's genetic risk profile".
Something has happened in the past two decades that has changed the way that modern biomedical scientist thinks about diseases. Because the changes in our perceptions have happened slowly, few of us have really taken notice of what it all means. The purpose of my latest book, Precision Medicine and the Reinvention of Human Disease, published January, 2018, is to show how advances in the field of Precision Medicine will forever change the way we understand and treat disease. Specifically, these advances are:
If you believe the hype, we are entering a new era of medicine in which each individual will receive unique treatment, determined by the sequence of his or her genome. This widely promulgated notion is simply ridiculous. There is no practical way to develop a unique treatment, test the treatment for safety and effectiveness, and titrate the correct dose, all for one person.
In January, 2018, Academic Press published my book Precision Medicine and the Reinvention of Human Disease. This book has an excellent "look inside" at its Google book site, which includes the Table of Contents. In addition, I thought it might be helpful to see the topics listed in the Book's index. Note that page numbers followed by f indicate figures, t indicate tables, and ge indicate glossary terms.
A Abandonware, 270, 310ge Ab initio, 34, 48ge, 108ge ABL (abelson leukemia) gene, 28, 58ge, 95–97 Absidia corymbifera, 218 Acanthameoba, 213 Acanthosis nigricans, 144ge Achondroplasia, 74, 143ge, 354ge Acne, 54ge, 198, 220ge Acquired autoantibody disease, 133 Acquired Parkinsonism, 105ge, 128, 281 Acrodermatisis verruciformis, 26–27 Acrokeratosis verruciformis of Hopf, 23–24 Actinic keratoses, 33 Actinobacillus actinomycetemcomitans, 217 Actinomyces pyogenes, 217 Activated oncogene, 28, 34–35, 57ge, 222ge Acute anterior uveitis, 208 Acute flaccid myelitis, 204–205 Acutely transforming retroviruses, 46–47 Acute myelogenous/myeloid leukemia, 33–34, 97, 139, 156–157 Adaptive immunity evolved, 192 Adenosine deaminase, 46, 72, 80 Adrenocortical carcinoma, 73, 103ge Adult T-cell leukemia, 339 Adverse effect, 275, 352–353 Aflatoxin, 30, 182 and hepatocellular carcinoma, 30, 182 Age adjusted incidence, 338, 354ge Age related macular degeneration, 105ge, 138, 199 Aggregate disease, 80, 98ge Aging, 35–36, 70–71, 125–126, 234, 354 Agouti, 86–87 AIRE gene, 198 Albinism, 77–78, 81–82, 84 Alcohol, 128, 156, 159, 287 abuse, 128, 158 related neurodevelopmental disorders, 159 Allele, 70, 98ge, 158–159, 332–333, 347–348 Allelic heterogeneity, 71, 98ge Alpha1 antitrypsin deficiency, 82 Alpha particles, 166–167 Alpha-spectrin gene, 70 Alpha thalassemia, 83, 92 Alstrom syndrome, 122–123 Alternative RNA, 85, 98ge Alzheimer disease, 6–7, 70, 139, 233–234, 246, 327–328, 353 Amateur scientists, 329–330 Aminoglycoside, 128 induced hearing loss, 77 Amoebic encephalitides, 213 Amphotericin B, 128, 213 Amyloidosis, 83, 98ge, 200 Amyloid plaques, 126 Amyotrophic lateral sclerosis, 77, 282 Anaerobic conditions, 108ge Anal squamous carcinoma, 45 Anaphylactic shock, 133 Anaphylaxis, 133 Anaplasma phagocytophilum, 217 Anatomic abnormalities, 6–7, 166–167 Ancestral class, 184, 231 Aneuploid, 89, 89f Aneuploid cells, 49ge Aneuploidy, 47, 89f Angelman syndrome, 75, 86 Angiofollicular lymph node hyperplasia, 50ge Angiogenesis, 120, 138 Angioimmunoblastic lymphadenopathy, 55ge Angiopoietin, 139 Angiotensin converting enzyme inhibitors, 4 Animal model, 31, 33, 88, 170, 279, 351–354 Ankylosing spondylitis, 208 Anlagen, 243 Annotation, 264, 271, 308, 341 Anonymizing private and confidential medical data, 310 Anoxia, 91–92 Anterior segment mesenchymal dysgenesis, 53ge Anthers, 90 Antibasement membrane antigen, 132 Antibiotics, 190, 195–196, 210, 213 Antibody/antibodies, 21–22, 73, 126, 130–134, 139, 192, 197, 209, 299, 348–350 Anticipation, 86 Anucleate ovum, 254ge Anucleate red blood cell, 91 Aortic dissection, 142ge Apicomplexans, 184, 186 Aplastic anemia, 24–25, 95–96, 166 Apolipoprotein E (APOE) gene, 70 Apoptosis, 48–61, 73, 133–134, 197–200 Archaeans, 191 Archaeplastida, 186, 191–192 Aromatase inhibitors, 136–137 Arrhythmias, 135 Arrhythmogenic right ventricular cardiomyopathy, 331 Arrhythmogenic right ventricular dysplasia, 70 Artemis gene, 72 Arteriosclerosis, 171 Arthritis, 131–132, 134, 139, 197–198, 201, 208, 346, 349–350 Arthropod vectors, 202 Arylsulfatase, 121–122 deficiency, 121–122 Asbestos, 26–27, 29, 167–169, 279–280 Ash leaf spots, 102ge Aspergillus flavus, 182 Aspergillus fumigatus, 214 Aspirin, 124, 135 Asplenia/polysplenia, 72 Ataxia, 73, 83, 91, 128, 159 telangiectasia, 91 Atherosclerosis, 158, 171, 199 Atrial myxomas, 95–96 Atrioventricular conduction defects, 53ge ATRX gene, 92 Atypical hemolytic uremic syndrome, 199 Atypical intraductal hyperplasia, 32 Authentication, 273 Autism, 7, 138 Autoantibodies, 133–135, 137–138 Autoantibody disease, 130–134, 197 Autocoders, 283 Autocoding, 277, 282–283 Autocorrelation, 267 Autoimmune disease, 21–22, 131–134, 193, 197–198, 251 Autoimmune disorder characterized, 131 Autoimmune hemolytic anemia, 144ge Autoimmune lymphoproliferative syndrome (ALPS), 133–134, 197–198 Autoimmune polyendocrinopathy-candidiasisectodermal dystrophy, 198 Autoimmune thyroiditis, 201 Autoimmune variant, 73, 123–124 Autoinflammatory diseases, 197, 235 Autonomous growth, 46 Autophagy, 83 Autopsies, 81 Autopsy report, 36, 277 Autosomal dominant hearing loss, 104ge, 106ge Autosomal dominant polycystic kidney disease, 122–123 Autumn crocus (Colchicum autumnale), 200 Axonal neuropathy, 70 Azacytidine, 87 B Bacillary angiomatosis, 202, 210–211 Bacille Calmette-Guerin (BCG), 22–23 Bacillus B. globigii, 212 B. hoagii, 218 Bacteremia, 202, 213 Bacteroides B. fragilis, 214 B. vulgatus, 214 Bannayan-Riley-Ruvalcaba syndrome, 156, 173ge Bardet-Biedl syndrome, 72, 122–123, 157 Barr body, 85–86 Bartonella B. henhenselae, 210–211 B. quintana, 202, 217 Bartonella species, 202–203 Bartter syndrome, 136f Basal body, 72 Basal cell carcinoma, 158, 170 Base pairs (bp), 84, 86 Bastocystis, 213 B cell, 161, 192, 339, 346, 349–350 acute lymphoblastic leukemia, 160–161 lymphomas, 339, 349–350 BCR-ABL, 56ge Bcr/abl fusion gene, 28, 95–97, 251 BCR (breakpoint cluster region) gene, 58ge Beckwith-Wiedemann syndrome, 75, 86, 106ge Behcet disease, 99ge, 206 Benign tumor, 26–27, 50ge, 176ge Benzene, 166, 169 Bernard-Soulier syndrome, 59ge, 135 Bevacizumab, 138, 142ge Bilateral acoustic schwannomas, 56ge Bilateral progressive sensorineural hearing loss, 135 Bilateral retinoblastomas, 318ge Biliary atresia, 122–123 Bimodal age distribution, 52ge, 104ge, 292–293 Biomarker development, 252 Birth defects, 159, 335 Bisphossy jaw, 168–169 Bite infections, 213 BK virus, 339 Bladder catheters, 214 Bladder tumor, 95 Blast cells, 104ge Blastocystis, 213 Blast transformation, 104ge Blastula, 3, 51ge, 85, 235, 255ge, 335–336, 356ge Blau syndrome, 54ge, 199, 220ge Blended class, 205–206, 218ge, 246, 252ge, 258ge Blepharspasm, 350 Blistering disease, 123–124, 132 Blood cell lineages, 49ge Blood cells, 28, 82, 91, 131, 133–134, 137, 139–140, 164–166, 172, 197–198, 281, 295, 328 Blood clotting cascade, 164 Bloom syndrome, 50ge Boder sedgwick syndrome, 99ge Bone marrow failure, 24–25 Bone marrow necrosis, 30 Bone marrow stem cells, 49ge Bone marrow toxins, 166 Bootstrapping, 232, 287–288 Botox, 138, 171, 350 Bovine spongiform encephalitis, 219ge Bovine spongiform encephalopathy, 144ge BRAF, 290, 347–348 mutation, 347–348 V600E, 94–95 Brain tubers, 354 Branchiootorenal syndrome, 53ge BRCA gene, 28, 119, 126 Breakpoint cluster region (BCR) gene, 58ge Breast cancer, 32, 32f, 73–74, 95, 119, 126, 136–137, 250, 252, 299, 338, 347–348, 352 Bronchiectasis, 123, 289 Bronchioloalveolar carcinoma, 173ge Bronchoalveolar carcinoma, 173ge Bronchogenic carcinoma, 169 Bronchogenic lung cancer, 159, 167 Brucellosis, 200 Bruck syndrome, 142ge Brugada syndrome, 142ge Brugia malayi, 223ge Buerger disease, 159 Burgess shale reserves provided, 343 Burkitt lymphoma, 45, 161, 251, 339 Bypassing trials, 349 C Caffey disease (infantile cortical hyperostosis), 142ge CAG repeat, 71–72, 108ge, 300 Campylobacter pylori, 217 Cancer chemotherapy, 105ge, 157 death rate, 161, 245, 345 deaths, 31, 161, 167, 182, 245, 338, 340, 345 phenotype, 9ge, 46–47, 49ge progression, 87, 99ge Cancer-causing syndrome, 50ge Candidate biomarkers, 252 Candidate causal mutations, 94 Candidate gene, 79, 99ge, 129, 303, 331 approach, 99ge Carbapenem resistant Klebsiella pneumoniae, 38–40 Carcinogen, 29–31, 35, 50ge, 167, 169, 175ge, 182, 243, 347 Carcinogenesis, 9ge, 26–27, 30–31, 41, 46–47, 49–50ge, 54ge, 58ge, 73, 88–89, 167, 175ge, 338, 347 Carcinoid syndrome, 142ge, 144ge Cardiac conduction, 164 Cardiac rhabdomyoma, 102ge Cardiofaciocutaneous syndrome, 347–348 Cardiomyopathy, 101ge, 104ge, 128, 137, 209, 247–248, 331 Cargo disorder, 175ge Cargo receptor complex, 100ge Cargo vesicle, 100ge Carney complex, 95–96, 99ge, 103ge Carney syndrome, 50ge, 99ge Carotid body chemoreceptor cells, 81 Carriers, 28, 32–33, 50ge, 78, 96–97, 107ge, 182, 194–195, 219ge, 332–336, 339 Case studies, 99ge Castleman disease, 45, 50ge, 331 Categorical data, 291 Catheter, 214, 219ge Cattle, 332–333 Causality, 6, 17–61, 356–357ge paradoxes, 17–25 Cause of death error, 311ge CCR5 coreceptor, 172 Cd1a, 139 CD20 inhibitors, 346, 349–350 Ceased and liver tumor, 47 Celiac disease, 208 Cell death, 3, 48, 49ge, 61ge, 80, 91, 99ge, 133–134, 197–198, 254ge Cell death rates, 254ge Cell division, 3, 21, 56–58ge, 60–61ge, 90, 190–191 Cell free media, 203 Cell junctions, 193 Cell suicide, 48, 49ge Cell type, 9ge, 19–20, 26, 30–31, 35, 42–43, 48, 49ge, 51–52ge, 56–58ge, 60ge, 71, 80, 84–85, 89–90, 92, 101ge, 107–108ge, 120, 129–130, 175ge, 219ge, 222ge, 278, 281 Cellular differentiation, 89, 100–101ge Cellular hypoxia, 81 Cellular pathway, 4, 120, 128–130, 164, 169–170, 175ge, 199 Cellulitis, 29, 213 Centers for Disease Control and Prevention (CDC), 38–40, 306–307 Cerebellar ataxia, 99ge, 128 Cerebellum, 102–103ge, 156, 159, 174ge Cerebrospinal fluid, 79 Cervical cancer, 32, 338–340, 358ge Chagas disease, 187–188, 194–195, 219ge, 339 Channel defects, 121 Channel disorders, 142ge Channelopathies, 9–10ge, 124, 142ge Charcot-Marie-Tooth disease, 51–52ge, 70, 175ge, 331 Chediak-Higashi syndrome, 10ge, 199 Chemodectomas, 81 Chemokine, 76, 100ge, 172 Chemoreceptor cell hyperplasia, 81 Chernobyl, 169 Cherubism, 199 Chicago heat wave, 295–296 Chikungunya virus, 219ge, 223ge Childhood cancer, 27, 49ge, 161, 343, 345 Childhood thyroid cancer, 169 Chimeric Antigen Receptor for T cells (CAR-T) therapy, 161–162 Chimeric receptor, 161–162 Chimney sweeps, 166 Chimpanzee’s genome, 75–76 Chitin, 217, 242 Chlamydia trachomatis, 208 Chloramphenicol, 166 Chloroplasts, 191–192, 219ge Cholangiocarcinoma, 30, 60ge, 166–167, 339 Chorioadenoma destruens, 255ge Choriocarcinoma, 108ge, 161, 220ge, 251, 254–255ge, 257–258ge Chromatin remodeling complex, 85, 89 Chromosomal aberration, 156–157 Chromosomal anomalies, 94, 335 Chromosomal instability, 49ge Chronic myelocytic leukemia, 58ge, 161 Chronic myelomonocytic leukemia, 56ge, 104ge Chronic obstructive pulmonary disease (COPD), 98ge, 158–159, 246, 253ge Chronic recurrent multifocal osteomyelitis/synovitis, 198 Chryseobacterium meningosepticum, 217 Churg-Strauss syndrome, 206 Chytrids, 241–242 Cigarette smoking, 156, 173ge Cigarette use, 158 Ciliated epithelia, 9ge Ciliopathies, 9ge, 122–123, 124f Circulating proteases, 82 Cirrhosis, 58ge, 82–83, 100ge, 126, 128–130, 158–159, 164–165t, 197 Cis acting, 100ge, 108ge CJD prion, 144ge C-KIT, 56ge, 103ge, 140 Clade, 253ge Cladistics, 253ge, 255ge Class Apicomplexa, 184 Class Archaeplastida, 191–192 Class assignment, 187, 205, 218ge, 221–222ge, 243–244, 252–253ge, 311ge Class blending, 218ge, 244–247, 252ge Class Crianata, 219ge Classification, 5, 10ge, 59–60ge, 93–109, 183–184, 185f, 186–187, 206, 229–232, 239–244, 253ge, 269, 311ge, 341 Classifier algorithms, 243–244, 253ge Class Mimiviridae, 221ge Class properties, 184, 189, 231, 234–235, 256ge Clear cell carcinoma, 106ge Clinical trial, 5, 8ge, 136–137, 162, 239, 244, 295, 343–350 Clinorchis sinensis, 60ge Clonal disorder, 105ge Clonal expansion, 31, 56ge, 102ge, 105ge, 107ge, 134, 248–249 Cluster analysis, 253ge Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology, 335–336 Coagulopathies, 235 Coding mutations, 99ge, 119, 126, 137, 140, 158–159, 281 regions, 158–159 Codon, 56ge, 106ge, 287–288, 311ge Coelomic, 237, 243 Colchicine, 200 Collagen disorder, 142ge Collagenopathy, 128, 142ge, 164 Combined DNA Index System (CODIS), 265 Commensal organism, 214 Common ancestor, 102ge, 105ge, 187, 221–222ge Comparing genome sequences, 265 Complement disorders, 199 Complement regulatory diseases, 198 Completeness, 230, 272, 276 Complex disease, 54ge, 58ge, 173ge, 201, 220ge, 352 Complexity barrier, 299–300 Conduction disorders, 164 Congenital anomaly, 51ge, 94, 355ge Congenital disorder, 24–25, 51ge, 58ge, 164, 173ge, 175ge Congenital dyserythropoietic anemia, 254ge Congenital heart defects, 122–123 Congenital hyperinsulinism, 142ge Congenital tumor, 155–156 Conserved gene variants, 157–158 Contig disease, 355ge Contiguous gene deletion syndrome, 355ge Control population, 298, 358ge Control samples, 174ge Control subjects, 99ge, 281 Converged pathway, 137, 140, 239 Convergence, 4–5, 8ge, 73–74, 117–145, 187, 200, 221–222ge Convergent disease, 135–145, 340, 346, 350 COPD. See Chronic obstructive pulmonary disease (COPD) Copy neutral, 109ge Copy number, 47, 51ge, 57ge, 102ge, 222ge Coronary artery disease, 38, 143ge, 182 Coronary artery thrombosis, 38 Corpora amylacea, 126 Corpus callosum, 159 and alcoholism, 159 Correlation, 96, 107ge, 121, 267, 315ge, 352 distance, 311ge Cost of curing curable disease, 141 Cowden syndrome, 50ge, 95, 100ge, 102ge, 156, 173–174ge Cowdry bodies, 280f, 281 Coxsackie virus, 209 CpG islands, 84, 87, 100ge, 109ge CpG methylation patterns, 100ge CpG sites, 84, 90, 100ge Cranioectodermal dysplasia (Sensenbrenner syndrome), 122–123 Creutzfeldt-Jakob disease, 144ge, 219ge Cri du Chat, 104ge CRISPR technology. See Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology Crohn disease, 54ge, 99ge, 199, 201, 220ge Curator, 302, 307–308, 311ge Curse of dimensionality, 296, 311ge Cutis laxa, 72, 134, 289, 354ge Cyanobacteria, 191–192, 219ge Cyclooxygenase–2, 24 Cyclospora, 184, 219ge Cyst, 104ge, 213, 216–217 Cystic fibrosis, 71, 98ge, 141, 142ge, 160, 334, 351, 356ge Cytokine signaling, 83, 198 disorders, 199 Cytokine storm, 140, 352–353 Cytomegalovirus, 182, 222ge, 281 infection, 280f Cytotoxic agents, 87, 105ge Cytotoxic lymphocytes, 143ge Cytotrophoblasts, 193, 238 D DARC, 172 Darier disease, 24, 26–27 Dark data, 311ge Data mining, 230, 355ge object, 9–10ge, 13ge, 143ge, 243–244, 253–258ge, 264–271, 273–275, 285–286, 290–291, 298, 311–314ge, 316–318ge, 355ge, 357–358ge readers, 341 repurposing, 312ge, 355ge resource, 122–123, 252, 254ge, 271–272, 284, 286, 292–293, 341, 352 scrubbing, 307, 312ge, 355–356ge sharing, 302–318, 312ge, 343, 349 triple, 267 Death certificate, 13ge, 38–40, 39f, 311ge, 339 Dedifferentiation, 101ge Deficiency of the interleukin-1 receptor antagonist, 198 Deidentified record, 275, 308 Dengue virus, 223ge De novo mosaic disease, 336 De novo mutation, 12ge, 24, 51ge, 57ge, 101ge, 107ge, 331–332, 334–336, 356ge Dentatorubropallidoluysian atrophy, 108ge Deoxyadenosine deaminase deficiency, 80 Deoxycoformycin, 80 Dermal bone, 254–255ge Dermatofibroma, 45 Developmental disorder, 7, 75, 105ge, 139, 154–155t, 156 Diagnostic and Statistical Manual of Mental Disorders (DSM), 7–13 Diethylstilbestrol fulfill, 30–31 Differentiation, 55ge, 80, 89, 100–101ge, 108ge, 243, 349–350 Digenic disease, 105ge, 173ge DiGeorge syndrome, 104ge, 131 Dilated cardiomyopathy, 70, 95, 122–123, 128, 143ge Dimensionality, 253ge, 296, 312ge, 356ge Discordant diagnoses, 247–248 Disease convergence, 4–5, 8ge, 73, 117–145, 187, 200, 221–222ge Disease pathway, 3, 40–44, 105ge, 142–145, 163, 170, 349–350, 353 Diseases-in-waiting, 205–210 Disease variants, 73, 78, 123–124, 132, 303, 331–332 Distal myopathy, 98ge, 279 Diuretics, 121, 136 DNA crosslink repair, 42, 51ge DNA repair, 22, 34, 41–42, 48, 49ge, 51ge, 61ge, 72, 80, 84, 91, 99ge, 144ge, 164 DNA replication, 51ge, 144ge Donovania granulomatis, 217 Double stranded DNA, 186–187, 221ge Down syndrome, 52ge Dravet syndrome, 142ge, 303 Driver pathway, 9ge, 170, 174ge Drug-induced methemoglobinemia, 128 DSM. See Diagnostic and Statistical Manual of Mental Disorders (DSM) Ductal carcinoma in situ (DCIS), 32, 32f, 95 Duffy blood group antigen, 172 Dynein arms, 123 Dyserythropoiesis, 250, 254ge Dyslipidemias, 164, 172 Dysmorphic facial development, 33–34 Dysmorphism, 121–122, 127, 156, 170, 234 Dysplasia, 51ge, 53ge, 70, 104ge, 122–123, 136f, 156–157, 175ge, 358ge Dysplastic gangliocytoma, 102ge, 156 Dysplastic nevi, 33, 95 Dysregulations, 88, 106ge, 235 Dystrophic epidermolysis bullosa, 134 Dystrophin, 122 E Early detection, 248–249, 251–252 Eaton lambert syndrome, 144ge Ebola virus, 210 Ectoderm, 58ge, 61ge, 88, 101–102ge, 104ge, 235–238, 255ge Edematous placental villi, 220ge Eearly onset sarcoidosis, 54ge, 220ge Ehlers-Danlos syndrome, 142ge Electronic health record, 341 Electronic medical record, 272–273, 276, 340 Ellis van Creveld syndrome, 122–123 Embryo, 3, 30–31, 34, 54ge, 59ge, 85, 92, 103ge, 107ge, 235, 238, 252, 254–255ge Embryogenesis, 81, 86, 103ge, 255ge Embryonal carcinoma, 161, 238, 255ge Emery-Dreifuss muscular dystrophy, 330 Emphysema, 82–83, 134, 158–159, 164–165t Encapsulation, 308, 310, 312ge Encephalitis lethargica, 206 Encephalitozoon intestinalis, 217 Enchondral bone, 238, 254–255ge Encryption, 276, 312ge Endocarditis, 202–203, 213, 220ge Endoderm, 58ge, 61ge, 101ge, 104ge, 142ge, 235–238, 252ge, 255ge Endodermal/Ectodermal neoplasms, 236 Endometrial carcinoma, 156 Environmental disease, 22, 83, 208 Environmental factors, 11–12ge, 24, 97, 119, 121, 127, 129, 158, 173, 173ge Eosinophilic granulomatosis, 206 Epidermis, 30, 48, 53ge, 58ge, 60ge, 73, 101ge, 107ge, 123–124, 132, 242 Epidermolysis bullosa, 8ge, 70, 73, 123–124, 134 Epigenetic instability, 87, 108ge Epigenome, 47–48, 51ge, 84–93, 89f, 100–101ge, 103ge, 108ge, 130, 154–155t Epigenomic disease, 85, 90, 92 Epigenomics, 47–48, 84–93, 100–101ge, 129–130, 154–155t, 252ge Epistasis, 6, 9ge, 42–43, 57ge, 144ge Epithelial and non-epithelial tumors, 243 Eponymous disease, 45, 52ge Epstein-Barr virus, 45, 55ge, 79, 140, 251, 339 Erasure, 85, 91, 103ge Esophageal cancer, 159 ETV6-NTRK3 fusion, 250 Eugenics, 19, 331–337 Eukaryote, 55ge, 57ge, 182–183, 191–192, 205, 213, 219ge, 241, 354 Evolution, 48, 190–193, 230–231, 327–328, 343, 354 Evolutionary taxonomy, 184 Evolve, 8ge, 41–42, 60ge, 191–192, 306 Exceptional responders, 275, 295, 348–349 Exceptional responder trials, 348 Exome sequencing, 78–79, 98 Exon, 98ge, 101ge, 106ge Exotic disease, 181, 219ge Expressed genes, 109ge, 292 eXtended Markup Language (XML), 264–265, 317ge EYA4 gene, 95 F Facial angiofibromas, 102ge Factor VIII, 56ge, 100ge, 134, 172 Facultative intracellular organism, 190–191, 220ge Fair use, 307, 312ge Familial aneurysm disorders, 142ge Familial cold autoinflammatory syndrome, 54ge, 198–199, 220ge Familial cold autoinflammatory syndrome-2 (Guadaloupe periodic fever), 199 Familial dilated cardiomyopathy, 70, 95 Familial HLH, 199 Familial hypercholesterolemia, 56ge, 59ge, 164–165t, 171 Familial hypocalciuric hypercalcemia type, 134 Familial mediterranean fever, 54ge, 198, 200, 220ge Fanconi anemia, 42, 49–51ge Father’s sperm, 11ge Ferruginous bodies, 279–280 Fibrochondrogenesis, 70 Fibromyalgia, 206 Fibrosing disorders, 199 Fibulin, 72 Filaria, 208, 218 First analyses, 303, 310 Flagellum, 199, 241–242 Flattening, 48, 341, 354 Flawed data, 307–308 Fleas, 202 Flu epidemic, 294, 332–333 Fluke, 48, 182, 339 Folic acid supplementation, 121 Food and Drug Administration, 141, 160–161, 346 Foreign antigen, 21–22, 192, 218ge Forme fruste, 165, 174ge Founder effect, 332–333, 356ge Founder’s mutation, 356ge Fourier series, 288, 357ge Fragile x syndrome, 99ge, 108ge, 355ge Free-lance data analysts, 343 Frequency, 34–36, 40, 57–58ge, 106–107ge, 125–127, 131, 155, 170, 189, 291, 292f, 300, 310, 318ge, 357ge distribution, 291 Freshwater, 194 Friedreich ataxia, 83, 99ge, 108ge, 143ge Frontotemporal dementia, 77, 281, 354ge Fungemia, 212 G GAA repeat, 83 Gain-of-function, 119 Gamete, 102–103ge, 174ge, 238, 255ge, 336 Gastric maltomas, 49ge Gastrointestinal stromal tumor (GIST), 103ge, 140 Gastrulation, 236–238 Gaucher disease, 280, 334 Gaussian curve, 358ge Gaussian distribution, 288, 291 Gene duplication, 105ge Gene editing, 327–328, 335–336 Gene pool, 18, 35–36, 119, 157–158, 183–184, 190–191, 331–336 Gene sequence, 42, 161, 187, 204–205, 290 Gene silencing, 86–87, 336 Gene therapy, 46, 160–161 Genetically engineered mouse (GEM), 52ge Genetic disease, 11ge, 22, 69–70, 120, 160, 208, 235, 335 Genetic heterogeneity, 8ge, 71, 74, 101ge, 103ge, 144ge Genetic instability, 47, 49ge, 87–88, 89f, 92–93, 95, 99ge, 102ge, 175ge, 357ge Genetic mosaicisms, 336 Genetic mutation, 2, 7ge, 11ge, 24–25, 72, 74–75, 80, 85, 90, 97, 118, 125, 127, 139, 145ge, 171, 175ge, 303 Genetic testing, 71 Genome testing, 97 Genome-wide Association Study (GWAS), 174ge Genotype, 9ge, 23, 52ge, 60ge, 97, 99ge, 103ge, 144ge, 157, 175ge, 183, 215 Geriatric disease, 233 Germ cell(s), 52ge, 55–57ge, 59ge, 61ge, 102–103ge, 107ge, 155–156, 174–175ge, 235, 238, 251, 255ge, 290, 336, 339 of body, 52ge line, 255ge, 336 neoplasms, 238 origin, 238, 290 tumors, 103ge, 155–156, 238, 251, 339 Germinomas and seminomas, 175ge, 238, 255ge Germ layer, 85, 104ge, 236–238, 242–243 Germline, 7ge, 25, 27–28, 33–34, 49ge, 51–52ge, 54ge, 60ge, 75–76, 80–82, 85–86, 97, 101ge, 103ge, 107ge, 109ge, 119, 126, 128, 130, 156, 220ge, 255ge, 313ge, 335–336 Germline mutation, 7ge, 25, 27, 33–34, 49ge, 51–52ge, 75–76, 80–82, 102ge, 107ge, 119, 130, 156 Gerstmann Straussler Scheinker Syndrome (GSS), 144ge Gestational mole, 220ge Gestational trophoblastic disease, 255ge Giant cell (temporal) arteritis, 206 Gilbert syndrome, 57ge GIST. See Gastrointestinal stromal tumor (GIST) Glioblastoma, 138, 156 Gluten sensitive idiopathic neuropathies, 206 Glycosylation disorder, 58ge, 164, 173ge, 175ge Gnathostomes, 192–193, 218ge Golgi bodies, 41 Goodpasture syndrome, 132–133 Gorlin syndrome, 170, 175ge Gout, 124, 198–201, 351–352 Granulocyte/macrophage colony stimulating factor (GM-CSF), 137–138, 346 Graves’ disease, 131–132 Grawitz tumor, 282–283 Griscelli syndrome, 175ge, 199 Group A streptococcus infection, 21–22, 203 Gulf War syndrome, 206 GWAS. See Genome-wide Association Study (GWAS) H HACEK, 203, 213, 220ge Haemophagocytic lymphohistiocytosis, 140, 199 Hairy cell leukemia, 55ge, 161 Hallermann Streiff syndrome, 206 Hamartin, 72, 103ge, 139, 354ge Hamartoma, 56ge, 72, 100ge, 102ge, 138–139, 156, 174ge, 234, 354 Haploid, 86, 102ge human genome, 287 Haploinsufficiency, 75 Haplotype, 86, 102ge Hashimoto thyroiditis, 134 Healthcare institutions, 316ge Hearing loss, 70, 82, 104ge, 106ge, 123, 128, 135, 173ge Heat related deaths, 295–296 Heavy legs, 206 Helicobactor pylori infection, 49ge Hematopoietic tissue, 166, 254ge Hemochromatosis, 128, 143ge Hemoglobin, 42, 56ge, 105ge, 107ge, 119, 143ge, 160, 163, 195–196, 334–335, 354ge synthesis, 195–196 Hemolytic anemia, 133–134, 144ge, 197–198 Hemolytic uremic syndrome, 135, 199 Hemophagocytic lymphohistiocytosis, 99, 199 Hemophilias, 164, 235 HEMPAS, 254ge Henoch schonlein purpura, 206 Hepatic angiosarcoma, 166–167 Hepatitis B virus, 339–340 Hepatitis C virus, 339 Hepatocellular carcinoma, 30, 47, 52ge, 58ge, 83, 166–167, 182, 339–340 Herceptin, 348 Hereditary angioedema, 126, 135 Hereditary hemorrhagic telangiectasia, 138 Hereditary inclusion body myopathy, 98ge Hereditary leiomyomatosis, 79 Hereditary nonpolyposis colorectal cancer syndrome (HNPCC), 143ge Hereditary thrombocythemia, 98ge, 105ge, 139, 165 Hermansky-Pudlak syndrome, 175ge, 199 Herpes simplex infections, 194–195, 281 Heterochromasia iridum, 289 Heterokont, 213 Heterotaxy, 72, 105ge, 123 Heterozygosity, 54ge, 103ge, 109ge High blood pressure, 44, 136 Hispaniola, 189, 196 Histiocytic medullary reticulosis, 103ge HIV, 100ge, 128, 172, 196, 199, 221ge and AIDS, 210–211, 219ge Hodgkin lymphoma, 45, 52ge, 70, 161, 292–293, 293f, 357ge Holt-Oram syndrome, 61ge, 76, 145ge Homolog 1, 130 Homologous genes, 184 Homologs, 105ge, 354 Homology, 214, 253ge Homunculus, 3 HTLV-1, 339 HTT gene (and CAG repeat), 71–72 Human malaria, 215 Human subject, 275–276, 294–295, 301, 307–308, 310, 345–346, 348, 356ge Huntingtin protein, 71–72 Huntington disease, 71–72, 99ge, 103ge, 108ge, 300, 354ge Hurler disease, 282 Hydatidiform mole, 198–199 Hydrops-ectopic calcification-‘moth-eaten’ (HEM), 96 Hydrops fetalis, 96, 131 Hyperbilirubinemia, 57ge Hypercholesterolemia, 127, 171–172 Hyperimmunoglobinemia D with periodic fever syndrome, 198 Hyperimmunoglobulin D, 54ge, 220ge Hypermethylation, 86–87, 130 Hypermutate, 134 Hypernephroma, 282–283 Hypersurveillance, 327–329 Hypertension, 24–25, 121, 128, 136–137, 136f, 139, 158, 162, 165, 174ge, 334 Hyperthermia, 142ge, 144ge Hypertrophic osteoarthropathy, 10ge Hypocalciuric hypercalcemia, 284 Hypomethylating agents, 86–87, 91 I ICD. See International Classification of Disease (ICD) Ichthyosis, 104ge Identification, 143ge, 160, 204, 234, 240–241, 253ge, 265, 271–277, 286, 308, 313ge, 338 Identifier, 13ge, 174ge, 253ge, 265, 355ge IL-1-beta activation disorders, 198 Imatinib, 4, 140–141, 161, 346 Immediate cause, 37–38 Immune deficiency, 194, 222ge syndromes, 192–193, 197, 218ge Immunocompromised individuals, 194, 213 Immunodeficiency, 46, 72, 76, 79–80, 84, 98ge, 332–333, 352 Immunosuppressed individuals, 45 Immutability, 270–271, 273 Imprinting, 86 Inactivated x chromosome, 279 Incidental finding, 213 Inclusion bodies, 279–281 Incomplete dominance, 144ge Indexing, 277, 281 Infectious disease, 7ge, 34, 36, 50ge, 53ge, 154, 181–190, 194–196, 202–204, 209–211, 213–214, 216, 219ge, 222ge, 231, 233–234, 251, 339, 352, 356ge Inflammasome, 198, 200, 207 Inflammasomopathies, 198 Inflammatory disease, 54ge, 94, 139, 196–201, 220ge, 251 Inflammatory myofibroblastic tumor, 346 Inflammatory pathway, 139, 196–197, 200–201 Inflammatory response syndrome, 8ge Information is release, 305 Informed consent, 346 Inherited dilated cardiomyopathy, 171 Inherited retinoblastomas, 313ge Initiation, 45, 50ge, 54ge, 101ge, 145ge Initiation factor, 56ge, 145ge Innate immune system, 138, 197–201 Inscrutable genes, 69–78 Institutional Review Boards (IRBs), 275–276, 307, 346 Intermediate cause, 37–38 Internal body spaces, 237 International Classification of Disease (ICD), 233–234 Interoperability, 282, 306 Interpretation errors, 300 Interstitial cystitis, 206 Intracellular, 134, 190–191, 195, 199–200, 217, 220–222ge, 279 organisms, 195 Intraductal hyperplasia, 32 Intraflagellar transport, 123 Intrinsic factor, 135 Intrinsic immunity, 281 Introns, 83 Introspection, 269–270 IRBs. See Institutional Review Boards (IRBs) Irreproducible, 6, 216, 218ge, 252ge, 298–300, 309 Irreversible, 126, 275–276 Irritable bowel syndrome, 206, 213 J JAK2, 105ge, 139–140, 165 JAK2 mutation, 56ge, 140, 165 JAK2V617F, 140 Janus kinase, 72 Jeune chondrodysplasia syndrome, 122–123 Joubert syndrome, 122–123 K Kallman syndrome, 98ge, 104ge Kaposi sarcoma, 45–46, 50ge, 210–211, 293, 339 Karyopyknosis, 49ge Karyotype, 89f, 103ge Kashin-Beck disease, 206, 209 Kawasaki disease, 206 Kelley-Seegmiller syndrome, 105ge Keratoacanthoma, 45, 49ge, 54ge Kingella kingae, 203, 220ge Klebsiella granulomatis, 217 Knockout mice, 27, 54ge, 128, 143ge, 352 Koch’s postulates, 201–205, 352, 356ge Koilocytosis, 280f Korean War, 286–287 Kupffer cells, 166–167 L LAMA4 gene, 95 Lamellar inclusions, 137 Lamina propria, 203–204, 208 Lamin B receptor, 96 Lamin gene, 330–331 Large follicular center cell (diffuse histiocytic) lymphoma, 161 Lassa fever, 219ge Latency, 29–30, 46–47, 54ge Lead-induced encephalopathy, 128 Leber congenital amaurosis, 122–123 Legacy data, 270, 273, 306, 314ge Leishmaniases, 194–195, 342 Leishmaniasis, 154, 187–189, 219ge, 223ge Leri-Weill dyschondrosteosis, 53ge Lesch-Nyhan disease, 351–352 Lethal acantholytic epidermolysis bullosa, 70 Lethal genotypes, 144ge Lethal junctional epidermolysis bullosa, 6, 70 Leukemia, 4, 9ge, 28, 33–35, 46, 49ge, 55–56ge, 58ge, 73, 87, 95–97, 103–104ge, 139–141, 142ge, 155–157, 160–162, 166, 233–234, 251, 339, 346, 349–350, 354ge Lewy bodies, 126, 279 dementia, 279 Lichen sclerosus, 206 Liddle syndrome, 24–25, 136f, 165 Li-Fraumeni syndrome, 49–50ge, 73, 103ge Ligneous conjunctivitis, 79, 354 Limb malformation, 75, 168 Lineage, 9–10ge, 49ge, 51–52ge, 55–56ge, 84–85, 88, 100–103ge, 105ge, 107–108ge, 131, 185f, 230–232, 235, 242–243, 252–253ge, 255–257ge, 314ge, 318ge, 358ge Lipodystrophy, 70–71, 172, 330–331 Lipopolysaccharide, 353 Liver cancer, 28, 47–48, 52ge, 159, 251, 340 LMNA (Lamin A/C), 70–71, 331 LMO2, 46 Locus heterogeneity (LOH), 71–72, 101ge, 103ge, 120, 141 Long branch attraction, 187, 221–222ge Long noncoding RNA, 106ge Loss-of-function, 98–99ge, 118, 158–159, 197–198 Lou Gehrig disease, 282 Louis-Bar syndrome, 99ge Low penetrance, 27, 50ge LRRK2 gene mutation, 164–165t, 171 LRRK2 protein kinase, 171 Lubeck disaster, 22 Lymphoma, 28, 45–47, 49–50ge, 52ge, 55ge, 88, 103ge, 139, 155–157, 161, 251, 292–293, 293f, 339–340, 346, 349–350, 356–357ge Lymphoproliferative disease, 45, 55ge Lymphoproliferative disorder, 50ge, 56ge Lynch cancer family syndrome, 50ge Lynch syndrome, 119, 143ge Lytico-Bodig disease, 206 M Machine translation, 255ge, 282–283 Macrophage, 23, 54ge, 137–138, 140, 195, 198–199, 201, 203–204, 220ge, 280–281, 346 activation disorders, 199 Mad hatter disease, 168 Majeed syndrome, 54ge, 198, 220ge Major histocompatibility complex, 72 Malakoplakia, 281 Malaria, 107ge, 169, 172, 182, 184, 195–196, 215, 219ge, 223ge, 244–245 Malassezia furfur, 217 Malignant fibrous histiocytoma (MFH), 218ge, 252ge Malignant phenotype, 28, 47–48, 50ge, 55ge, 87, 99ge, 105ge, 107ge, 175ge Malignant transformation, 26–27, 238 Malnutrition, 219ge, 222ge MALToma, 30, 48, 357ge Maltomas, 49ge, 55ge Mantle zone, 1 Manual coding, 283 Marchiafava-Bignami disease, 159 Martsolf syndrome, 175ge Materia medica, 200 Maternal lineage, 55ge Mathematical models, 356ge Maturity onset diabetes of the young (MODY), 76, 96–97 Mayaro fever virus, 219ge McKusick-Kaufman syndrome, 122–123 Meckel-Gruber syndrome, 122–123 Mediterranean anemia (thalassemia), 200 Medullary, 81, 103ge Medullary thyroid carcinoma, 237, 255ge Medulloblastoma, 103ge Melanoma, 26–27, 33, 55ge, 94–95, 103–104ge, 107–108ge, 237, 288 MEN2 (multiple endocrine neoplasia-2), 256ge Mendelian disease, 104ge, 131 Mendelian inheritance, 104ge, 131–132, 144ge, 154 Menetrier disease, 53ge Merkel cell carcinoma, 339 Mesenchymal cells, 242–243 Mesoderm, 58ge, 60–61ge, 88, 101ge, 104ge, 158, 235–238, 242–243, 255ge Mesothelioma, 26–27, 29, 126, 167–168, 339 Metabolic pathway, 24, 117, 120, 125, 159, 191, 235, 346, 348 Metabolic syndrome, 158, 174ge Metadata, 264, 267–270, 286, 311ge, 316ge Metastasis, 9ge, 144ge, 221ge, 251, 255ge Metazoa, 230, 255ge Methemoglobinemia, 128 Methotrexate, 128 Methylating agents, 86–87, 91 Methylation, 75, 84, 86–87, 90–91, 100–101ge, 103ge inhibitors, 91 Methylmalonic acidemia, 128 MFH (malignant fibrous histiocytoma), 218ge, 252ge MGUS (monoclonal gammopathy of undetermined significance), 31, 55ge, 248–249 Microarray, 13ge, 336, 342, 357ge Microdeletion disease, 104ge Microphthalmia-, 53ge, 61ge, 82, 145ge MicroRNA, 85, 91–92, 104ge, 106ge Microsatellite, 57ge, 98ge, 143–144ge instability, 119, 140, 144ge Microscopic polyangiitis, 207 Microthrombotic disorder, 125 Miller syndrome, 128 Milroy disease, 75, 96–97, 120 Mimics of common diseases, 129, 131, 248 Mimics of rare inherited disease, 131 MiRNA, 104ge Misfolded proteins, 98ge, 144ge Mismatch repair, 42, 51ge, 130, 140, 143–144ge pathway, 130 Mitochondrial DNA, 73, 77 Mitochondrial myopathy, 128 Mitochondriopathic deafness, 128 Mitochondriopathies, 84, 104ge, 164 Mitosis, 55–56ge, 109ge Modeling algorithms, 357ge MODY (maturity onset diabetes of the young), 76, 96–97, 121, 164–165t Monkeypox virus, 219ge Monoclonal gammopathy, 31, 50ge, 55ge, 248–249 Morgellons disease, 207 Mortimer disease, 207 Motor neuron disease, 104ge, 279 Muckle-Wells syndrome, 54ge, 198, 220ge Mucolipidosis, 142ge Muir-Torre syndrome, 50ge Multicentric Castleman disease, 50ge Multiclass classification, 230, 255ge Multiclass inheritance, 50ge, 256ge Multifactorial disease, 103ge Multiple basal cell carcinoma, 175ge Multiple endocrine neoplasia, 256ge Multiple myeloma, 31, 55–56ge, 248–249, 249f Multiple sclerosis, 197, 201, 349–350 Multipotent stem cell, 56ge Multi-step disease, 29–30 Multistep pathogenesis, 12ge, 205 Muscular dystrophy, 53ge, 56ge, 70, 122, 175ge, 330 Muscularis propria, 265 Mutagen, 56ge Mutation, 2, 23, 69–70, 118, 156, 187, 250, 281, 329 Mutation rate, 336, 357ge Mutator phenotype, 156–157, 175ge Myalgic encephalomyelitis, 346, 349–350 Myasthenia gravis, 126, 133, 142ge, 197 MYC, 47–48, 95 Myelodysplastic syndrome, 104ge, 156–157, 250 Myelofibrosis, 56ge, 139, 165 Myeloproliferative disorders, 33–34, 56ge, 60ge, 104ge, 124, 139–140, 165 Myeloproliferative syndrome, 48ge Myofascial pain syndrome, 207 Mytotonic dystrophy, 108ge Myxomatosis, 350–351 N Naegleria encephalitis, 194, 213 Naegleria fowleri, 194, 213 National Academies of Sciences, 1 National patient identifier, 276–277, 314ge Natural selection, 35–36, 41, 43, 56ge, 58ge, 157–158, 169, 191–192, 334, 336 Neonatal-onset multisystem inflammatory disease, 54ge, 220ge chronic neurologic cutaneous and articular syndrome, 198 Neorickettsia sennetsu, 210–211, 218 Nephroblastomas, 30, 243 Nephronophthisis, 122–123, 351–352 Nerve cells, 143ge Nerve conduction, 82 Neural crest, 81–82, 84, 219ge, 235, 237–238, 254–256ge Neural tube, 237–238 defects, 121 Neurectoderm, 88, 105ge Neuroblastoma, 75, 95, 155–156, 293, 346 Neurocristopathy, 238, 256ge Neurofibrillary tangles, 126, 353 Neurofibroma, 56ge, 74–75, 313ge Neurofibromatosis, 27, 56–57ge, 74–75, 104ge, 109ge, 138, 145ge, 256ge, 313ge, 354ge Neuromuscular junctions, 138 Neuron, 51ge, 84, 100ge, 104ge, 107ge, 279 Neurotoxin, 300 Neutralizing autoantibodies, 137–138 Neutropenia, 49ge, 76, 83, 100ge, 133–134, 137, 197–198, 346 Nevocellular cells, 57ge New daily persistent headache, 207 New variant creutzfeldt jakob disease, 144ge NF-B activation disorders, 199 NKX2.5 homeobox gene, 53ge Nodding disease, 207–209 Nomenclature, 10ge, 12ge, 38, 59ge, 61ge, 216, 221ge, 223ge, 233, 241, 257ge, 282–284 Nomenclature code, 282–283 Noncoding region, 76–77, 101ge, 106ge, 118, 127, 158–159, 336 Nonconvergent disease, 124 Nonhistone chromatin complex, 84 Nonhistone nuclear protein, 88 Non-Hodgkin lymphoma, 349–350, 357ge Noninherited genetic disease, 33–34, 57ge Nonphylogenetic property, 187, 222ge Nonphylogenetic signal, 187, 222ge Nonquantitative data, 277–279 Nonsyndromic disease, 70, 105ge Nuclear atypia, 19–20, 55ge, 87–88, 89f, 102ge Nuclear membrane, 41, 87–88, 109ge Nucleoli, 41, 87–88, 89f Null hypotheses, 106ge, 314–315ge, 318ge NUT-1 Gene, 164–165t NUT midline carcinoma, 250 O Obesity, 11ge, 54ge, 72, 75, 103ge, 123, 143ge, 157–158, 162, 174ge, 337 Object oriented programming, 223ge, 254ge, 256ge, 266–267, 269, 311–312ge, 314ge Obligate intracellular organism, 190–191, 222ge Observational data, 349, 358ge Odontogenic keratocyst, 170, 175ge Off-label, 350, 358ge Oguchi disease, 73 Oligodendroglioma, 358ge Onchocerca volvulus, 208, 219ge Oncocyte, 159, 176ge Oncogene, 26–28, 34–35, 46–47, 48ge, 54ge, 57ge, 59ge, 80–81, 107ge, 143ge, 192, 222ge, 329, 357ge Ontology, 6, 9ge, 60ge, 232, 256ge, 306, 311ge O’nyong’nyong fever virus, 223ge Oocyte, 11ge, 52ge, 55ge, 107ge, 155 Open access, 303 Open reading frame (ORF), 70, 105ge Open source, 288, 290–291, 313ge Operating system, 232, 267, 272, 288, 313ge, 317ge Opisthokonts, 217, 241–242 Opisthorchis viverrini flatworm (fluke), 339 Opportunistic infection, 194, 205, 222ge Oral cancer, 159 ORF (open reading frame), 70, 105ge Orofaciodigital syndrome, 122–123 Orphan diseases, 154 Orphan drug, 160, 175ge, 345–346 Orthodisease, 354, 358ge Ortholog, 75–76, 105ge, 354 Orthologous gene, 105ge, 351, 354, 358ge Osteitis fibrosa cystica, 109ge Osteoarthritis, 94, 209 deformans endemica, 209 Osteomyelitis/synovitis, 198 Osteoporosis, 168–171 pseudoglioma syndrome, 170–171 Osteosarcoma, 73, 103ge Outcome data, 275, 290, 348–349 Outlier, 99ge, 275, 294–295, 302 Ovarian cancer, 103ge, 136–137, 344 Oxygenic photosynthesis, 191–192 P P53, 41, 73, 95, 103ge Palindrome, 290 Pancreatic islet, 20, 339 Pancytopenia, 49ge, 100ge, 104ge, 254ge PAPA. See Pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) Papanicolaou smear, 358ge Pap smear, 338, 358ge Paradox, 17–25, 231–233, 246–247, 256ge Paraganglia, 81 Paraganglial tumor, 81 Paraganglioma, 80–81, 83–84 Paralog, 105ge Paraneoplastic syndrome, 142ge, 144ge Paraphyly, 255ge Parasite, 53ge, 133, 172, 182, 194–196, 215, 217, 219–220ge, 223ge, 304 Parasitic organisms, 190–191, 223ge Parasympathetic, 135 Parent class, 8–9ge, 12ge, 189, 205, 222ge, 229–232, 252ge, 255–256ge, 267, 269, 311ge, 314ge Pareto’s principle, 314–315ge, 318ge Parkin knockout mice, 352 Parkinson disease, 6–7, 52ge, 54ge, 143ge, 164–165t, 171, 352–353 Paroxysmal nocturnal hemoglobinemia, 60ge Partial lipodystrophy, 330 Partial mole, 220ge, 257ge Partington syndrome, 53ge Pathway, 2, 18, 69–70, 117, 159, 184, 231, 269, 341 Pathway directed treatments, 135–145, 346–347 Pathway trials, 346 Patient confidentiality, 305 PDGFR. See Platelet derived growth factor receptor (PDGFR) Pelger-Huet anomaly, 88, 96, 128, 355ge Pembrolizumab, 140 Pemphigus, 132 Penetrance, 9ge, 27, 50ge, 57ge, 74, 144ge Percolozoan encephalitis, 213 Periodic fever syndrome, 198 Pernicious anemia, 128–130, 132–133 Peroxisome biogenesis disorder, 164 Peroxisome disorder, 222ge Personalized medicine, 2, 337 Petriellidium boydii, 216 Phakoma, 354 Pharmacogenomics, 305, 315ge Phenocopy disease, 105ge, 125–131, 145ge, 164, 352 Phenotype, 2, 23, 71–72, 117, 156, 197–198, 235, 303, 336 Phenotypic heterogeneity, 162, 175ge Phenylketonuria, 56ge, 160 Phenytoin embryopathy, 121–122 Pheochromocytoma, 80–81, 83 Philadelphia chromosome, 58ge Phocomelia, 83, 128, 168 Photosynthesis, 191–192, 219ge Phyllodes tumor, 73 Phylogenetic chronometer, 71 Phylogenetic classification, 358ge Phylogenetics, 72, 187, 217, 221–222ge, 253ge, 278, 358ge Phylogeny, 340, 358ge Pigmented villonodular synovitis, 207 Pityriasis rosea, 207 PiZZ variant, 83 Placenta, 192–193, 238–240, 255ge, 258ge Plasma cells, 31, 55–56ge, 134, 197, 218ge, 248–249, 249f Plasminogen deficiency, 354 Plasmodium knowlesi, 215 Plasmodium vivax malaria, 172, 196 Platelet derived growth factor receptor (PDGFR), 103ge, 140 PLEC gene, 73, 123–124 Pleiotropic, 72, 76, 105ge, 332–333 Pleiotropy, 144ge Plod2 gene (procollagen lysine dioxygenase 2), 142ge Pneumococcal disease, 164–165t, 195 Pneumocystis, 53ge, 216–217 Point mutation, 56–57ge, 59ge, 143ge, 331, 357ge Polyangiitis, 206–207 Polyarteritis nodosa, 207 Polycystic kidney disease, 122–123, 174ge Polycythemia, 56ge, 83, 105ge, 139, 165 Polygenic disease, 127, 131, 144ge, 157–158, 173–174ge, 333–334 Polymorphism, 8ge, 42, 54ge, 58ge, 78–79, 97, 102ge, 106ge, 118, 134, 143–144ge, 157–158, 174ge, 195–196, 220ge, 290, 312ge Polynucleotide repeat disorder, 108ge Polyvinyl chloride, 166 Population of the U.S, 11ge, 107ge, 154, 291 Porphyria cutanea tarda, 57ge, 127 Posterior cortical atrophy, 207 Posterior flagellum, 241–242 Postmitotic cell, 48, 58ge, 60ge, 98ge, 234 Post translational defects, 173ge Post translational modifications, 26, 58ge, 101ge, 164, 175ge Post-transplant lymphoproliferative disease, 55ge Potocki-Shaffer syndrome, 53ge Power law, 288, 291, 314–315ge, 356–357ge Power series, 288 Prader-Willi/Angelman syndrome, 75, 86, 103–104ge Precancer, 31–34, 46–47, 49–51ge, 53ge, 55–56ge, 58–59ge, 87–88, 203, 338 regression, 58ge Precancerous condition, 31, 58ge Precision data, 5, 263–318 diagnosis, 106ge, 215–216, 247–258, 338 medicine, 1–13, 17, 69–109, 117, 153–154, 160–162, 187, 234, 270, 285–298, 301, 327–358 taxonomy, 210–223 Preclinical trial, 352–353, 358ge Precursor lesions, 32, 44, 248 Precursors, 32–34, 44, 89, 95, 106ge, 134, 248, 252ge, 254–255ge Predictive analytics, 257ge, 357ge Predictive test, 10ge, 257ge Predictor, 257ge Premalignancy, 59ge Premature aging disorders, 71 Premature aging syndrome, 70, 101ge Prevalence, 11–12ge, 24, 27, 59ge, 101ge, 131, 154, 358ge Prevotella dentalis, 213 Primary biliary cirrhosis, 197 Primary cilia, 9ge, 123 Primary data, 307, 315ge Primary disease, 6, 9ge, 11–12ge, 92 vs. secondary disease, 10ge Primary effusion lymphoma, 45 Primary erythromelalgia, 10ge, 124–125 Primary host, 220ge, 223ge Prion, 144ge, 181, 183, 187, 203, 214, 221ge, 354 Prion disease, 119, 126, 144ge, 354 Privacy vs. confidentiality, 307, 315ge Prognosis, 2, 10ge, 95, 108ge, 250–252 Progressive neurodegenerative disorder, 71–72 Prokaryotes, 57ge, 183, 191, 213 Promoter, 46–47, 52ge, 56ge, 59ge, 100–101ge, 106ge, 219ge Promyelocytic leukemia, 87, 161 Properties vs. classes, 257ge Prospective clinical trial, 344, 349 Protein folding disorders, 199 Protein misfolding disorders, 198 Proto-oncogenes, 46–47, 48ge, 57ge, 59ge, 222ge Protozoa, 59ge, 205, 213, 216–217 Protozoal infections, 258ge Protozoans, 23, 59ge, 205, 216–217, 258ge Proviruses, 46 Proximate cause, 13ge, 37–38, 40, 59ge Prurigo nodularis, 207 Psammoma bodies, 126, 279 PSA value, 277 PSEN1 gene, 95 Pseudallescheria boydii, 216 Pseudallescheriosis, 216 Pseudoagouti, 86–87 Pseudoconvergent diseases, 124 Pseudodichotomy, 199, 243 Pseudogene, 85, 106ge Pseudo-Pelger-Huet, 128 Psoriasis, 139 Psychiatric disorder, 7 PTEN gene, 102ge, 156 Public Law, 11ge, 154, 346 Pulmonary alveolar proteinosis (PAPs), 126, 133, 137–138, 346 Putative causal oncogene, 28 P value, 314ge, 358ge Pyoderma gangrenosum, 54ge, 198, 220ge Pyogenic arthritis, 54ge, 198, 220ge Pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA), 198 Pyruvate dehydrogenase, 100ge Q Quantitative traits, 136, 334 Quaternary disease, 12ge R Rag1 and Rag2 recombinase, 80 Ragged red fiber myopathy, 279 Rag genes, 192–193, 218ge Randomized control trial, 343, 348–349 Randomly occurring mutation, 98ge Random number, 266, 296–298 Rare diseases, 4, 19, 73, 122, 153–176, 204, 248, 289, 330 Act of 2002, 11ge, 154 Recessive polycystic kidney disease, 122–123 Recommender algorithms, 243–244, 258ge Redundant systems, 197 Reference laboratories, 213–214 Reflection, 30, 270, 313ge Refractory anemia, 97, 104ge Refsum disease, 222ge Regression, 33–34, 47, 50ge, 55–56ge, 58–59ge Regulatory element, 9ge, 42–43, 61ge, 76, 106ge, 145ge Reidentified record, 312ge Relapsing polychondritis, 197 Renal angiomyolipoma, 83, 102ge, 174ge Renal artery dysplasia, 136f Renal cell carcinoma (RCCs), 83, 106ge, 242–243, 282–283 Renal tubular acidosis, 128 Repeatability, 26, 343 Retinal dystrophy, 120, 122–123 Retinitis, 73 pigmentosa, 8ge, 70, 73, 101ge, 107ge, 119–120, 123, 142ge, 173ge Retrospective data, 349 Retrovirus, 46–47, 57ge, 59ge, 182, 190, 192–193, 199, 221–223ge, 339 Rett syndrome, 7, 90, 100ge Rhabdoid tumor, 47, 60ge, 88–90, 89f, 354 Rhabdoid tumor A, 60ge Rhabdomyosarcoma, 49ge, 103ge Rheumatic fever, 21–22, 132–133, 203, 233–234 Rheumatoid arthritis, 131–132, 134, 139, 197, 201, 346, 349–350 Rh incompatibility disease, 131 Rickettsia, 55ge, 191, 217, 221ge Rickettsiosis, 217 Rieger syndrome, 53ge Risk prediction, 248, 251–252 RNA polymerase, 59ge, 106ge, 219ge RNA silencing, 101ge RNA splicing, 85, 98ge RNA that might influence gene, 85 Roberts syndrome, 83, 128, 355ge Rochalimaea quintana, 217 Rod cone dystrophy, 72 Root cause, 2, 9–10ge, 12–13ge, 24–25, 46, 51ge, 56ge, 60ge, 71, 76–79, 81, 85, 89–90, 92, 96, 117, 121, 125, 127, 129, 137, 140, 144ge, 154–155t, 158–160, 188–189, 192–193, 195, 207, 303, 341, 345, 347–348, 351–352, 355ge Rubber and tire manufacturing industries, 166 Russell-Silver syndrome, 75, 86, 106ge S Sample contamination, 216, 300 Sample size, 106ge, 296, 298, 315ge Sampling errors, 278, 300 Sampling size, 298 SAPHO syndrome (synovitis, acne, pustulosis, hyperostosis, and osteitis), 207 Sarcoglycan complex synthesis, 164 Sarcoglycanopathies, 164 Sarcoidosis, 54ge, 207, 220ge Sars virus, 219ge Schnitzler syndrome, 199 Schwannoma, 56ge, 138, 145ge SCID. See Severe combined immunodeficiency disease (SCID) SCN5A gene, 95 Screening tests, 248, 257ge, 338 Scurvy, 128, 233–234 Secondary data, 11ge, 315–316ge Secondary disease, 6, 9–12ge Secondary HLH, 199 Secretory breast carcinoma, 250 Self-limited disease, 210 Seminoma, 156–157, 161, 175ge, 238, 255ge, 339 Senior-Loken syndrome, 122–123 Serotype, 215, 223ge Serratia marcescens, 212 Severe combined immunodeficiency disease (SCID), 46, 72, 80, 84 SGCD gene, 95 Shagreen patches, 54ge Shoe industry workers, 166 Short rib polydactyly, 122–123 Short stature homeobox, 53ge Shwachman-Diamond syndrome, 24–25, 95–96 Sick building syndrome, 207 Sickle cell anemia, 119, 334, 354ge Sickle cell disease, 50ge, 56ge, 107ge, 119, 143ge, 160, 195, 334–335, 354ge Sideroblastic anemia, 97, 104ge, 128 Signaling pathway, 139, 170 Sign of Leser-Trelat, 144ge Silent mutation, 106ge Similarity scores, 282–283 Single gene disease, 70–71, 96, 105ge, 107ge Single nucleotide polymorphism (SNP), 56ge, 78–79, 98ge, 102ge, 106–107ge, 174ge, 336 in GWAS, 174ge Single nucleotide variant (SNV), 106ge Sister chromatid cohesion, 83 Situs inversus, 105ge, 124f Sjogren’s syndrome, 207 Sleeping sickness, 187–188 Small cell carcinoma, 173ge Small interfering RNA, 106ge Smallpox virus, 172 Smokovia, 18–19 Smoothened, a multifuctional protein, 170 Sodium channel, 10ge, 124–125, 142ge, 165 Soma, 34, 60ge Somatic mosaicism, 103ge, 107ge, 335 mutation, 33–34, 56ge, 59–60ge, 75, 98ge, 107ge, 165, 335–336, 357ge Soot, 166 Speciation, 35, 105ge, 258ge Species, 2, 8–10ge, 17, 21–22, 31–33, 35, 41–42, 49ge, 53ge, 60ge, 75–76, 104–106ge, 119–120, 142–144ge, 171–172, 181–184, 187–188, 188–189t, 190–191, 193–194, 196, 202–204, 210–211, 213–217, 219–221ge, 223ge, 230–231, 240–242, 248–249, 253ge, 255ge, 257ge, 280f, 284, 287–288, 332, 334, 351–354, 356ge, 358ge Spherocytosis, 70 Spliceosome disease, 107ge Spliceosome disorder, 98ge Spondyloarthropathies, 199 Spontaneous abortions, 128, 336 Spontaneous cerebrospinal fluid leak, 207 Spontaneously regressing diseases, 59ge Spontaneous regression, 33–34, 55ge Spontaneous vs. sporadic, 60ge Sporadic, 12ge, 24–25, 50ge, 60ge, 94–96, 119–120, 126, 171, 355ge prion disease, 119 retinoblastomas, 313ge Sporadic disease, 6, 24–25, 119, 293 vs. phenocopy disease, 145ge Sporozoite, 216–217 Squamous carcinoma, 33, 35, 45, 54ge, 107ge, 166, 173ge, 203 Src oncogene, 46–47 Staging, 245–246, 250–252, 258ge Statin, 4, 171–172 Statistical anomaly, 246–247 Stem cells, 30, 49ge, 52ge, 56ge, 58ge, 60–61ge, 101ge, 105ge, 107–108ge, 166 Stickler syndrome, 70 Stiff person syndrome, 207 Stoichiometric, 40–41 Stroke, 158, 182 Subclassify, 230–231, 245 Subpopulation of cells, 59ge, 73, 88, 238, 296 Subtypes of disease, 98ge, 250, 278, 292, 348 Succinate dehydrogenase (SDHB), 80–81 Sudden infant death syndrome (SIDS), 287 Sudden unexpected death syndrome, 207 SUMO, 256ge Superclass, 6, 8ge, 10ge, 12ge, 222ge, 232–239, 257ge, 286, 311ge Susceptibility, 2, 7ge, 12ge, 50ge, 73, 77–78, 91, 144ge, 157, 190, 195, 212, 222ge, 251, 332–333, 351 Susceptibility gene, 12ge, 77–78, 294 SV40-like polyoma virus, 339 SV40 virus, 339 Sweating sickness, 207 Syncytin, 193 Syncytiotrophoblasts, 238 Synovial osteochondromatosis, 207 Systemic lupus erythematosus, 133–134, 197, 251, 346, 349–350 T Taino, 189, 196 Takayasu’s arteritis, 207 Tangier disease, 127, 164 Targeted therapies, 94, 245 Tau encephalopathy, 128 Tau protein, 281, 354ge Taxon-A, 223ge Taxonomy, 6, 12ge, 97–98, 181–189 T cells, 46, 72, 80, 131, 161–162, 192–193, 197, 218ge, 339 Telomere, 354 Teratomas, 30, 238, 255ge Teratomatous neoplasms, 235 Tertiary disease, 11–12ge Thalamus, 159 Thalidomide, 128, 168 Thesaurus, 223ge Thorotrast, 166–167 Thrombocythemia, 56ge, 98ge, 105ge, 139, 165 Thyroid carcinoma, 12ge, 169, 181–189, 210–223, 232, 240–241, 253–254ge Ticks, 202, 223ge Tietz syndrome, 81–82 Time stamp, 264, 266–269, 271–272, 313ge, 317ge Timothy syndrome, 142ge Tnf receptor associated periodic syndrome, 220ge TNNC1 gene, 95 TNNT2 gene, 95 Torticollis, 138, 171, 207, 350 Totipotent stem cell, 56ge, 58ge, 61ge, 90–91, 235, 238, 255ge Toxin, 9ge, 18, 20, 22–23, 29–30, 44, 94, 101ge, 105ge, 129–130, 138, 143ge, 156–157, 159, 165–166, 168–169, 171, 194–196, 207, 235, 281, 350, 353–354 Toxoplasmosis, 184, 194–195, 339 TP53 gene, 71, 73 Trachoma, 208 Trans acting, 101ge, 108ge Transcription factor, 9ge, 42–43, 53ge, 58–59ge, 61ge, 76, 82, 101–102ge, 106ge, 118, 145ge Transdifferentiation, 108ge Transfected T cells, 162 Transgenic strain, 47, 76 Translational research, 141, 145ge Translation factor, 145ge Translocation, 48ge, 57–58ge, 87, 108–109ge, 222ge, 251 Transplacental carcinogenesis, 167, 175ge Transposable element, 223ge Transposon, 106ge, 190, 221ge, 223ge Trastuzumab, 348 Trench fever, 202 Trichodynia, 207 Trigger finger, 207 Trilateral retinoblastoma, 318ge Trinucleotide repeat disorder, 71–72, 108ge Triple, 42, 254ge, 267, 316ge Trophoblastic tumor, 238, 255ge Trophozoite, 216–217 Tropical sprue, 207 Trypanosoma brucei, 187–188 TSC2 gene, 139, 174ge Tuberculosis, 22, 27, 182, 189, 194–196, 339, 351 Tuberous sclerosis (TSC), 27, 54ge, 72, 95, 102–103ge, 138–139, 174ge, 354, 354ge Tubers, 102ge, 138, 354 Tumor necrosis factor receptor-associated periodic syndrome (TRAPS), 199 Tumor speciation, 35 Turner syndrome, 53ge Type 2 diabetes mellitus, 4, 11ge, 76, 121, 157, 199, 334 Type errors, 318ge Type II pneumocytes, 137 Tyrosine kinase, 58ge, 140–141, 161 U Ubiquitin protein, 61ge Ulcerative colitis, 293–294 Ultraviolet light, 77–78, 158 Unclassifiable objects, 258ge Undiagnosed JAK2 mutation, 165 Undifferentiated tumors, 108ge Unikonta, 186, 241–242 Uniparental disomy, 54ge, 98ge, 109ge Uniqueness, 2, 13ge, 264–265, 272, 275, 337 Universal and perpetual, 318ge Universally unique identifier (UUID), 265–266, 318ge Unphagocytosed organisms, 281 Ureteric bud, 242–243 Usher Syndrome, 70, 101ge, 122–123, 175ge U.S. Navy, 212 V Validation, 5–7, 13ge, 125, 301–302, 316ge, 342–343, 348–349 Vanishing bone disease, 206 Vanishing white matter, 145ge Variable expressivity, 74–76, 109ge Vascular endothelial growth factor, 120 Vascular malformation, 99ge Vector, 162, 202, 219ge, 223ge VEGFC, 120 Velocardiofacial syndrome, 104ge Ventilator tubes, 214 Verrucous carcinoma, 339 Vesicular trafficking disorders, 164, 173ge, 175ge Vesicular transport disorder, 175ge, 281, 354 Visceral situs anomalies, 122–123 Vital signs, 44, 328–329 Vitamin B, 97, 128 V(D)J recombination units, 80 Von Hippel-Lindau disease, 109ge Von Recklinghausen disease, 56ge, 109ge Von Willebrand disease, 127, 135 W Waardenburg syndrome, 53ge, 61ge, 81–82, 145ge Warfarin embryopathy, 121–122, 128 Warthin tumor, 159, 176ge Wegener’s syndrome, 206 Wernicke-Korsakoff syndrome, 159 West nile fever virus, 219ge WHIM, 76 Whipple disease, 203–204, 208, 281, 356ge Wild-type gene, 145ge Wilms tumors, 49ge, 53ge, 73, 243 Wilson disease, 128 Wolbachia pipientis, 208, 219ge Wolf-Hirschhorn syndrome, 53ge, 104ge Woolly hair, 70 World Health Organization, 13ge, 182, 216, 234, 337 Wrong statistical test, 318ge X X chromosome, 7, 85–86, 109ge, 279, 318ge, 336 Xeroderma pigmentosum, 109ge, 354 X-linked lymphoproliferative syndrome, 199 XML (eXtended Markup Language), 264–265, 317ge Y Y chromosome, 102ge, 109ge, 308, 318ge, 354ge Yellow fever virus, 219ge, 223ge Z Zebrafish, 195, 347–348, 351 Zika virus, 188t Zipf distribution, 291, 292f, 314–315ge, 358ge Zollinger-Ellison syndrome, 164–165t Zoonosis, 5, 26, 342 Zygote, 3, 35, 51–52ge, 54ge, 85, 107ge, 335–336, 356ge
In January, 2018, Academic Press is publishing my latest book, Precision Medicine and the Reinvention of Human Disease
Preface. Chapter 1. Introduction: Seriously, What is Precision Medicine? Glossary References Chapter 2. Redefining Disease Causality Section 2.1 Causality and Its Paradoxes Section 2.2 Why We Are Confident that Diseases Develop in Steps Section 2.3 Cause of Death Section 2.4 What Is a Disease Pathway? Section 2.5 Does Single Event Pathogenesis Ever Happen? Glossary References Chapter 3. Genetics: Clues, Not Answers, to the Mysteries of Precision Medicine Section 3.1 Inscrutable Genes Section 3.2 Inscrutable Diseases Section 3.3 Recursive Epigenomic/Genomic Diseases Section 3.4 Why a Gene-based Disease Classification Is a Bad Idea Glossary References Chapter 4. Disease Convergence Section 4.1 Mechanisms of Convergence Section 4.2 Phenocopy Diseases: Convergence Without Mutation Section 4.3 The Autoantibody Phenocopies Section 4.4 Pathway-Directed Treatments for Convergent Diseases Glossary References Chapter 5. The Precision of the Rare Diseases Section 5.1 The Biological Differences Between Rare Diseases and Common Diseases Section 5.2 Precision Medicine's First Benefit: Cures for Rare Diseases Section 5.3 What the Rare Diseases Tell Us About the Common Diseases Section 5.4 Treatments for Rare Diseases are Effective Against the Common Diseases Glossary References Chapter 6. Precision Organisms Section 6.1 Modern Taxonomy of Infectious Diseases Section 6.2 Our Genome Is a Book Titled "The History of Human Infections" Section 6.3 Inflammatory Diseases: Collateral Damage in the War on Human Infection Section 6.4 Revising Koch's Postulates in the Era of Precision Diagnostics Section 6.5 Diseases-in-waiting Section 6.6 Precision Taxonomy Glossary References Chapter 7. Reinventing Diagnosis Section 7.1 The Principles of Classification Section 7.2 Superclasses Section 7.3 Classifications Cannot Be Based on Similarities Section 7.4 The Horrible Consequences of Class Blending Section 7.5 What Is Precision Diagnosis? Glossary References Chapter 8. Precision Data Section 8.1 What Are the Minimal Necessary Properties of Good Data? Section 8.2 Data Identification and Data Deidentification Section 8.3 What Do We Do With Non-quantitative, Descriptive Data? Section 8.4 Incredibly Simple Methods to Understand Precision Medicine Data Section 8.5 Data Reanalysis: More important than the Original Data Analysis Section 8.6 What Is Data Sharing, and Why Don't We Do More of It? Glossary References Chapter 9. The Alternate Futures of Precision Medicine Section 9.1 Hypersurveillance Section 9.2 Do It Yourself Medicine Section 9.3 Eugenics Section 9.4 Public Health Section 9.5 The Data Analyst of Tomorrow Section 9.6 Fast, Cheap, Precise Clinical Trials Section 9.7 Animal Experimentation Glossary References